
Ordinals and Sets

– Two Sides of the Same Coin –

Masahiko Sato
Graduate School of Informatics, Kyoto University

Abstract

We introduce a new way of looking at ordinals and sets. Owing to the
great success of Zermelo-Fraenkel set theory ZF as a foundational system
for describing mathematics, it is now almost taken for granted that the
notion of set is the most basic notion in mathematics. Indeed, formally
speaking, every mathematical object is a set in ZF. In this paper, however,
we show that another view of sets is possible. This is done by introducing
the notion of infon. Intuitively speaking, an infon is a sequence of bits
whose length is arbitrary but bounded by an ordinal. Using the notion of
infon, which we believe to be more fundamental than that of set, we will
show that it is possible to view an infon either as an ordinal or as a set.
Thus the totality of infons, so to speak, makes up a coin whose one side
consists of ordinals and the other side consists of sets.

1 Introduction

What is a mathematical object? Instead of answering this question directly,
modern mathematics provides us with numerous formal systems which we can
use to talk about mathematical objects. The characteristic of each formal sys-
tem is that the system implicitly characterizes the mathematical objects of the
system in terms of the axioms of the system. By proving theorems in a formal
system, we can establish various relations among mathematical objects, and in
this way we can deepen our understanding of mathematical objects. We can
also study mathematical objects by metamathematical methods. For example,
we can establish the consistency of a formal system either semantically by using
model theory or syntactically by using proof theory.

By formalizing the metatheory as well, we see that what we are doing in
metamathematics is often simply an interpretation of one linguistic system by
another. We can also view this as an act of implementing the mathematical
objects of one system by the mathematical objects of the other. If we can
implement one system by another, we may consider that the latter system is
more powerful than (or at least as powerful as) the former system, and the
latter system is more primitive or concrete than the former. Among various
formal systems, ZFC (Zermelo-Fraenkel set theory with the axiom of choice)

1

is now considered to be the most primitive system for the appropriate reason
that virtually all mathematical objects can be implemented as sets. So, from a
purely technical point of view, we can answer the very first question we raised
at the beginning of this section by saying: ‘A mathematical object is a set.’

In this paper, we will introduce the notion of infon1 and answer the question
by saying: ‘A mathematical object is an infon.’ We do this by implementing
both ordinals and sets as infons. Intuitively speaking, an infon is a sequence of
bits whose length can be transfinite but the length of an infon is always bounded
by an ordinal. Therefore, we assume that the notions of ordinal and that of bit
are the most basic notions necessary to build up a universe of mathematical
objects.

We use ordinals to define infons, and after infons are defined we introduce
an important notion of the length of an infon. The length of an infon is also
an ordinal and we will show how we can well-order all the infons so that infons
with shorter length always come before infons with longer length. By using
this well-ordering, we will assign a unique ordinal to each infon and will call it
the birthday of the infon. In this way, we can view an infon as an ordinal by
identifying an infon with its birthday.

An infon can also be viewed as a set. Let a be an infon and α be an ordinal.
Then we can view a as a set which contains α as its member if and only if the
α-th bit of a is 1. Since we already know that each infon can be seen as an
ordinal, we can endow a set structure on infons so that each infon is a set whose
members are also infons and hence sets.

Another motivation for introducing infons came from our desire to provide
a natural framework for doing mathematics formally on a computer (see our
[13]). As such a framework should enable us to write formal proofs as naturally
as we write proofs informally, we wished to design a formal system in which not
only logical reasoning but also computation can be smoothly carried out in it.
In order that computation can be done naturally in the system, it is necessary
that the system is equipped with basic data structures by which other data
structures can be easily implemented in terms of the basic data structures. For
such a purpose, we think that infon theory is more adequate than set theory.

In section 2 we introduce infon informally. In section 3 we explain how we
can view infons as ordinals, so that we can well-order infons. Infons can also be
viewed as sets and we explain this in section 4. After these sections on informal
introduction of infons, we give a first-order theory IT (infon theory) which gives
an axiomatization of the notion of infon in section 5. The axiomatization is
designed so that we can do computation in the formal system more naturally
compared to the traditional axiomatization of set theory like ZFC. More pre-
cisely, we will introduce the minimization operator µ which can be used to give
an explicit name for the smallest infon satisfying a given property. We note that
Bourbaki [1] introduced a similar operator τ , but that our µ-operator, which is
influenced by Kleene’s µ-operator [9] as well as Hilbert’s ε-symbol [7] and Rus-

1The term ‘infon’ was invented by Keith Devlin in the context of situation theory (see
[4, 5]). We borrowed the term here since we think that it is an appropriate name for the
entities we introduce in this paper.

2

sell’s ι-term [15], is more concrete than Bourbaki’s notation in the sense that
our operator is based on the total well-ordering of all the infons. We also show
that all the axioms of ZFC are derivable in IT. Section 6 concludes the paper.
We have an extra appendix section in which basic properties of IT are listed
and proved.

2 Infons

We define infons by assuming that we know ordinals informally. A bit is either
0 or 1 and we use each respectively as representing false and true as a boolean
value. We will also identify bits with the first two ordinals 0 and 1. Our
description of an infon is a generalization of the description of the tape and the
head of a Turing machine [14].

Imagine a tape of infinite length, where by infinity we mean absolute infinity
which is bigger than any ordinal, and assume that the tape is divided into cells.
The tape has the left end but does not have a right end. We assume that each
cell of the tape contains a bit, namely, 0 or 1. We also assume that attached
with the tape, there is a head which can move and stay at the left end of any
cell. In this case we say that the head is looking at the cell just to the right of
it, and we say that the cell is the α-th cell of the tape and that the head is at
the position α if the cell is the α-th cell counted from the left end. Here we start
counting by setting the counter to be 0 initially, so the left most cell becomes
the 0-th (not the first) cell of the tape. Given a tape a, we will write aα for the
content of the α-th cell of a. With this notation, a tape a may be informally
written as:

|0 a0 |1 a1 |2 · · · |α aα |α+1 · · · ,

where each vertical bar |β designates the left end of the β-th cell of a. We may
write a more succinctly as:

|a0|a1| · · · |aα| · · · ,

or even as:
a0a1 · · · aα · · · .

Given two bits, they are equal if they are both 0 or if they are both 1, and they
are distinct if one of them is 0 and the other is 1. Given two tapes a and b, they
are equal, in notation a = b, if aα and bα are equal bits for all α, and they are
distinct, in notation a 6= b, if aα and bα are distinct bits for some α.

We can now define the operation of cutting a tape at α as follows. Let a
be a tape and α be an ordinal. Then, the result of cutting a at α is a pair of
two tapes b and c where b and c are defined as follows. b is the left part of the
tape a which is obtained by the cutting appending a blank tape to the right of
it. Namely, the content of the β-th cell of b is the same as the content of the
β-th cell of a if β < α and it is 0 if β ≥ α. b can also be obtained from a by
setting the contents of all cells whose positions β ≥ α to 0. c is the right part
of the tape a which is obtained by the cutting. Namely the content of the β-th

3

cell of c is the content of the α + β-th cell of a. We will write left(a, α) for b
and right(a, α) for c. We say that the cutting of a at α is safe if right(a, α) is 0,
namely, if it is a blank tape such that each cell contains 0. We can now define
an infon as a tape which can be cut safely at some α. We remark that the tape
whose cells always contain 1 is not an infon since the tape cannot be cut safely.

With these definitions, we can now define an important notion of the length
of an infon. Let a be an infon. Then there is an ordinal α for which the cutting
of a at α is safe. We define the length of a as the smallest such α and write |a|
for it. We will write an infon a of length β informally as:

a0a1 · · · aα · · · |β .

Moreover, a0a1 · · · aα · · · |β+1 will also be written as:

a0a1 · · · aβ | ,

or as:
a0a1 · · · aβ

where aβ must be 1.
Having defined the length of an infon, we can now define the operation of

appending an infon b to the right of an infon a, whose result we write aˆb, by
stipulating that:

(aˆb)γ
4
=

{
aγ if γ < |a|,
bβ if γ = |a|+ β.

It is easy to see that |aˆb| = |a|+ |b|. We also see that (aˆb)ˆc = aˆ(bˆc).

3 Infons as Ordinals

So far ordinals are used to define infons but they are not infons. In this section
we will set up a bijective correspondence between ordinals and infons. This
amounts to assign a unique ordinal number to each infon which may be used
as the identification number of the infon. We can then simply identify the ID
number of an infon with the infon itself, and thereby we may think either an
ordinal as an infon or an infon as an ordinal. We must remember, however,
that this identification is relative to the bijective correspondence we are going
to establish. In the following assignment of ordinals to infons we use sets naively
assuming that we can well-order any set.

We define two operations bd and h, where bd will assign a unique ordinal
bd(a) called the birthday of a to each infon a and h will assign an ordinal h(α)
called the height of α to each ordinal α. The basic idea is to well-order infons
according to their lengths so that infons with shorter length will come before
infons of longer length.

We first define h(α) by transfinite induction on α. We need the following

two notations for the definition. For each ordinal α, we put Xα
4
= {a | |a| = α}

4

and write κα for the cardinality of the set Xα. We put h(0)
4
= 0 and for each

ordinal α > 0 we put:

h(α)
4
=

{
h(β) + κβ if α = β + 1,
sup{h(β) | β < α} if α is a limit ordinal,

We can immediately see that h(α) = 2α−1 for all finite α > 0, h(ω) = ω and
h(α) ≥ α for all α. We will say that an infon is initial if it is of the form 1 · · · |α
for some α. We will write α↑ for the initial infon 1 · · · |α.

Now, to define bd(a) for such a that |a| = α, we well-order the set Xα so
that 1 · · · |α becomes the least element of Xα and the order-type of the ordering
becomes κα. It is clear that such a well-ordering is possible. If a ∈ Xα is the
β-th element in Xα with respect to the well-ordering, then we put:

bd(a)
4
= h(|a|) + β.

Note that we have |a| ≤ h(|a|) ≤ bd(a) so that |a| ≤ bd(a) where h(|a|) = bd(a)
holds iff a is initial.

We thus have a bijective correspondence between infons and ordinals. We
will identify an infon a with the ordinal bd(a) which is the birthday of a. Then,
by this identification, we have α↑= h(α), and we can verify that

|a|↑ ≤ a < (|a|+ 1)↑
and also that if |a| < |b|, then a < b.

In summary, we can visualize our construction as follows. Let us suppose
that each ordinal marks a day on an imaginary time line. We start creating our
universe of infons on the 0-th day, and we add exactly one new infon on each
day. We also assume that there is a cabinet which can contain distinct infons
which are well-ordered, and that the cabinet is empty initially. On each day
α, we first check if the cabinet is empty or not. If the cabinet is empty, then
we well-order all the infons of length |α| so that the order type of the ordering
become κ|α| and store them in the cabinet keeping the ordering. We then take
out the infon |α| ↑ from the cabinet and make it the infon newly added on the
day. If the cabinet is nonempty, then we take out the smallest infon in the
cabinet and make it the infon of the day.

4 Infons as Sets

Let a be an infon and β be an ordinal. We say that β is a member of a, written
β ∈ a, if aβ = 1. Then by the identification we made in the previous section,
this definition induces a binary relation on infons. Namely, for infons a and b,
we have b ∈ a if and only if abd(b) = 1. By the membership relation on infons, we
can regard any infon a as a set whose members are exactly those infons b such
that ab = 1. In this view, equality of infons can be characterized extensionally
since we have:

(∀x. x ∈ a ⇔ x ∈ b) ⇒ a = b.

5

Suppose that b ∈ a, that is, ab = 1. Then we have b < a since b < |a| ≤ a.
With each infon a we can associate a ZFC set S(a) as follows.

S(a)
4
= {S(b) | ab = 1}.

It is easy to see that S(a) = S(b) iff a = b and that any ZFC set A can be
written as S(a) for some infon a by inductive argument on the rank of A. We
have moreover b ∈ a iff S(b) ∈ S(a) where the latter membership relation is the
membership relation on ZFC sets. In this way, we can view any infon as a ZFC
set and vice versa.

We have thus established two distinct views of infons as sets. The first one
is an internal view which is obtained by defining the membership relation as an
internal relation on infons. In this view, we can define the notion of set within
the theory of infons. The second one is an external view which identifies an
infon a with an external ZFC set S(a).

We remark that, as a set, the infon α ↑ consists of ordinals < α since we
have β ∈ α↑ iff β < α for all β.

We list below the first 9 infons together with their birthdays and their views
as sets. It should be noted that, according to the ordering method of infons
described in section 3, infons introduced on days 5, 6, 7 can be any permutation
of 3 infons, 011000 · · ·, 001000 · · · and 101000 · · ·. So, the list below is just one
of 6 possible lists of the first 9 infons.

birthday infon set
0 000000 · · · {}
1 100000 · · · {0}
2 110000 · · · {0, 1}
3 010000 · · · {1}
4 111000 · · · {0, 1, 2}
5 011000 · · · {1, 2}
6 001000 · · · {2}
7 101000 · · · {0, 2}
8 111100 · · · {0, 1, 2, 3}

5 Infon Theory

We define Infon Theory, IT, as a first-order theory. Unlike ordinary first-order
theories, IT has neither implication nor negation as its primitive logical connec-
tives. Instead, these connectives will be introduced as abbreviations. Also in
IT, formulas are defined as special terms whose values are either 0 or 1.

We define terms and formulas inductively as follows. We have two sorts of
variables for constructing terms and variables. They are object variables and
proposition variables. We will use Latin letters x, y, z for object variables and
p, q, r for proposition variables. Other Latin letters and Greek letters are used
as metavariables ranging over terms. When we use a Greek letter our intention

6

is to view the infon designated by the term as an ordinal. Similarly we use
capital Latin letters A,B etc. for sets. We use sans serif Latin letters P, Q etc.
as metavariables for formulas, and v as a metavariable ranging over both object
variables and proposition variables.

Terms are defined as follows.

1. An object variable is a term.

2. A formula is a term.

3. If α and β are terms, then α + β is a term.

4. If x is an object variable and P(x) is a formula, then µx[P(x)] is a term.

As a term, a formula denotes 1 (0) if it is true (false, resp.). The term µx[P(x)]
stands for the smallest ordinal a for which P(a) holds when ∃x. P(x) is true.
The term denotes 0 when ∃x. P(x) is false.

Formulas are defined as follows.

1. If p is a proposition variable, then p and p are formulas.

2. If a and A are terms, then a ∈ A and a 6∈ A are formulas.

3. If P and Q are formulas, then so are P ∧ Q and P ∨ Q.

4. If v is an object variable or a proposition variable and P(v) is a formula,
then ∀v. P(v) and ∃v. P(v) are formulas.

The formula α ∈ A (α 6∈ A) means that the content of the α-th cell of A is 1
(0, resp.). We remark that ∈ and 6∈ are two distinct binary predicate symbols.

With each formula P we associate its antiformula P− as follows.

1. p−
4
= p and (p)−

4
= p.

2. (a ∈ A)−
4
= a 6∈ A and (a 6∈ A)−

4
= a ∈ A.

3. (P ∧ Q)−
4
= P− ∨ Q− and (P ∨ Q)−

4
= P− ∧ Q−.

4. (∀v. P(v))−
4
= ∃v. (P(v))− and (∃v. P(v))−

4
= ∀v. (P(v))−.

For a closed formula P, we will have P is true iff P− is false and P is false iff
P− is true. We also see that (P−)− is P. In order to stress that P and P− are
antiformulas with each other, we sometimes write P+ for P.

We introduce some notational conventions.

P ⇒ Q
4
= P− ∨ Q+

P ⇔ Q
4
= (P ⇒ Q) ∧ (Q ⇒ P)

0
4
= ∀p. p

1
4
= ∃p. p

7

¬P
4
= P ⇒ 0

a = b
4
= ∀x. x ∈ a ⇔ x ∈ b

a 6= b
4
= ∃x. x ∈ a ⇔ x 6∈ b

A ⊆ B
4
= ∀x. x ∈ A ⇒ x ∈ B

We assume, as usual, that the binding power of ∀ and ∃ are weaker than those
of ⇒ and ⇔ and that those of ⇒ and ⇔ are weaker than those of ∧ and
∨ .

We assume standard natural deduction style inference rules for the minimal
logic including those for implication. Namely, we have introduction and elimi-
nation rules for the logical constants: ⇒ , ∧ , ∨ , ∀ and ∃ (see e.g. Prawitz
[11]).

There are two points we wish to remark here concerning our logical system.
One is that we have two kinds of variables ranging over two distinct domains.
The other is about the inference rules for equality.

The object variables range over infons, and the proposition variables range
over truth values 0 and 1 which are the first two infons, namely, the 0th and
the 1st infons. Reflecting this, we have the following rules for the universal
and existential quantifications over proposition variables with the usual eigen
variable conditions.

P(q)
∀q. P(q)

∀q. P(q)
P(Q)

P(Q)
∃q. P(q)

∃q. P(q)

P(q)1
...
R

R
1

As for equality, we have the following rules of replacement.

P(a) a = b

P(b)
R(P) P = Q

R(Q)

Note that the following rule is an instance of the replacement rules.

P P = Q
Q

We also note that we do not have to postulate reflexivity, symmetry and tran-
sitivity of the equality relation as axioms as they are all provable only by using
logical inference rules.

We also have the following two rules of equality which enable us to compute
truth values of formulas within the system.

P+

P = 1
P−

P = 0

These are all the inference rules of IT.

8

Before we list the axioms of IT we give some useful theorem schemata which
we can obtain by using only logical inference rules. We can prove 1 as follows.

01

0 ⇒ 0 1

∃p. p

We can then see that 1 = 0 implies contradiction, namely, 0:

...
1 1 = 01

0
(1 = 0) ⇒ 0

1

The formula 0, that is ∀p. p, is indeed a contradiction since we may infer
any formula from 0 by simply applying the ∀-elimination rule:

0
P

We have
P+ ∨ P−

since this formula is P− ⇒ P− which is provable by the ⇒ introduction rule.
We can now see

¬P ⇔ P−

as follows. The direction ⇐ is obvious since ¬P is an abbreviation of P− ∨ 0.
The other direction is also easy since we can infer P− from 0. By this theorem,
we have the law of the excluded middle: P ∨ ¬P.

We can also prove the following theorems:

P ⇔ P = 1
P = 1 ⇔ P− = 0

P− = 0 ⇔ ¬P−

¬P− ⇔ ¬¬P

P ⇔ ¬¬P

¬P ⇔ P = 0
(P ⇔ Q) ⇔ P = Q

∃p. P(p) ⇔ P(0) ∨ P(1)
∀p. P(p) ⇔ P(0) ∧ P(1)

a 6= b ⇔ ¬(a = b)

as well as all the theorems of classical second order propositional logic which
include all the inhabited types (regarded as IT formulas) of Girard’s system F
[6]. From the above theorems we see that for any formula P, P is a theorem iff

9

¬P− is a theorem. For example, since P+ ∨ P− is a theorem, we have another
theorem ¬(P− ∧ P+).

We add some more notational conventions before we list the axioms of IT.
We remark that the last 6 conventions below all introduce abbreviations for
terms of the form µz[Q(z)] and they will stand for the minimum z with the
property Q(z) if ∃z. Q(z) but they will stand for 0 if ∃z. Q(z) does not hold.

α ≤ β
4
= ∃x. α + x = β

α < β
4
= α ≤ β ∧ α 6= β

∀x ∈ A. P(x)
4
= ∀x. x ∈ A ⇒ P(x)

ω
4
= µz[0 < z ∧ ∀x. x < z ⇒ x + 1 < z]

{x | P(x)} 4
= µz[∀x. x ∈ z ⇔ P(x)]

{x ∈ A | P(x)} 4
= {x | x ∈ A ∧ P(x)}

{f(x) | P(x)} 4
= {y | ∃x. y = f(x) ∧ P(x)}

|A| 4
= µz[∀x. x ∈ A ⇒ x < z]

α↑ 4
= {x | x < α}.

As for axioms and axiom schemata of IT, we have the followings. Correctness
of these axioms with respect to the meaning of infons we gave in sections 2 –
4 is easy to verify and we omit the verification here. Since the arguments in
sections 2 – 4 can be carried out within ZFC, it follows that IT is consistent
relative to ZFC. We will show later in this section that all the axioms of ZFC
are derivable in IT. Hence, we will see that ZFC and IT are equiconsistent.

1. α + β = α ⇔ β = 0.

2. β 6= 0 ⇒ α + β = |{α + x | x < β}|.
3. α + (β + γ) = (α + β) + γ.

4. α < β ∨ α = β ∨ β < α.

5. ¬(α < β ∧ β < α + 1).

6. |a|↑≤ a ∧ a < (|a|+ 1)↑.
7. 0 < ω ∧ (α < ω ⇒ α + 1 < ω).

8. a ∈ b ⇒ a < b.

9. P(a) ⇒ P(µx[P(x)]) ∧ µx[P(x)] ≤ a.

10. (∀x. ¬P(x)) ⇒ µx[P(x)] = 0.

11. (∀x ∈ a. ∃y. P(x, y)) ⇒ ∃z. ∀x ∈ a. µy[P(x, y)] ≤ z.

10

12. (∃z. ∀x. P(x) ⇒ x ≤ z) ⇒ (∃y. ∀x. x ∈ y ⇔ P(x)).

Axioms 1 – 3 characterizes the addition of infons as ordinals.
Axiom 4 says that the ordering of infons is a total order. Axiom 5 says that

there is no infon between an infon α and its successor α + 1. Axiom 6 says
that any infon of length α is greater than or equal to α↑ and strictly less than
(α + 1)↑.

Axiom 7 characterizes ω as the smallest infon larger than any finite infons,
where finite infons are obtained from 0 by applying the successor operation
finitely many times.

Axiom 8 says that all the elements of a set are created before the set is
created.

Axioms 9 and 10 characterize the meaning of the µ-operator. Axiom 9 is
also an axiom schema of transfinite induction on ordinals.

Axiom 11 together with Axiom 12 enables us to define a set by replacement.
Axiom 12 says that if there is an upper bound for objects satisfying a given
property, then the collection of objects satisfying the property forms a set.
We can prove the converse of Axiom 12 by using Axiom 8. So, Axiom 12
together with its converse gives us a useful criterion by which we can decide
if the collection of objects satisfying a given property forms a set. We will see
that this axiom can be used to form big sets like power sets from smaller sets.

As we remarked above, the converse of Axiom 12 holds and so we have the
following theorem in IT:

(∀z. ∃x. P(x) ∧ z < x) ⇒ ¬(∃y. ∀x. x ∈ y ⇔ P(x))

We can use this theorem to show that the collection of objects satisfying a given
property does not form a set. For example, consider the property P(a)

4
= a 6∈ a

which Russell used to derive his paradox. Then by the above theorem we can
conclude that there is no set A such that a ∈ A if and only if a 6∈ a since a 6∈ a
holds for any infon a. We note that a ∈ A means that the a-th cell of infon A
contains 1, but, on the other hand, there is a tape t such that ta = 1 holds for
all ordinals a. However, the tape t is not an infon since we cannot cut t safely.
In general, for any property P(a), we have a unique tape t such the a-th cell of t
contains 1 if and only if P(a) holds. Then, the proposition ∃z. ∀x. P(x) ⇒ x ≤ z
is equivalent to the fact that the tape t can be cut safely at some α. We can
thus see that Axiom 12 is a natural formalization of our informal definition of
an infon as a tape which can be cut safely.

We now verify that all the axioms of ZFC (see [2]) are derivable in IT.
The Axiom of Extensionality easily follows from our definition of a = b as an
abbreviation of ∀x. x ∈ a ⇔ x ∈ b. As we will prove a 6∈ 0 in the Appendix
section, the Axiom of the Null Set follows from this fact. To prove the Axiom
of Unordered Pairs, let a and b be infons and consider the infon:

{a, b} 4= {x | x = a ∨ x = b}.
This is the desired set since by Axiom 4 we have a < b ∨ a = b ∨ b < a and in
any of three possible cases we can find a z which is ≥ both a and b. To verify

11

the Axiom of the Sum Set, we define the sum set of A by:

∪A
4
= {x | ∃y. y ∈ A ∧ x ∈ y}.

Let a be an infon and suppose that ∃y. y ∈ A ∧ a ∈ y. Then we have a ∈ b for
some b ∈ A and this means that a < A which verifies the axiom.

The Axiom of Infinity follows from Axiom 7, and the Axiom of Replacement
follows from Axioms 11 and 12.

Given a set A we define its power set by:

P(A)
4
= {x | x ⊆ A}.

To see that this set satisfies the Axiom of the Power Set, suppose that B ⊆ A.
Then we have |B| ≤ |A|, and by Axiom 6, we have B < (|B|+ 1)↑≤ (|A|+ 1)↑.

To prove the Axiom of Choice, let A be a set and suppose that ∃x. x ∈ F (α)
holds for any α ∈ A. Then by putting:

f(α)
4
= µx[x ∈ F (α)] (α ∈ A),

we obtain the desired choice function f . To see the Axiom of Regularity (also
known as the Axiom of Foundation [10]), let A be a nonempty set and consider

the infon a
4
= µx[x ∈ A]. Then a is the smallest element of A, and hence no

member of a can be a member of A since b ∈ a implies b < a. We have thus
verified all the axioms of ZFC.

We now wish to define the notion of cardinality in IT. To this end we prepare
some more notational conventions.

〈a, b〉 4
= {{a}, {a, b}}

Pair(c)
4
= ∃x. ∃y. c = 〈x, y〉

π1(c)
4
= µz[∃y. c = 〈z, y〉]

π2(c)
4
= µz[∃x. c = 〈x, z〉]

Fun(f)
4
= (∀z ∈ f. Pair(z)) ∧ ∀x ∈ f. ∀y ∈ f. π1(x) = π1(y) ⇒ π2(x) = π2(y)

dom(f)
4
= {π1(z) | z ∈ f}

ran(f)
4
= {π2(z) | z ∈ f}

f : A → B
4
= Fun(f) ∧ dom(f) = A ∧ ran(f) ⊆ B

f : A
1−1→ B

4
= f : A → B ∧ ∀x ∈ f. ∀y ∈ f. π1(x) 6= π1(y) ⇒ π2(x) 6= π2(y)

f : A
onto→ B

4
= f : A → B ∧ ran(f) = B

f : A
bij→B

4
= f : A

1−1→ B ∧ f : A
onto→ B

A ≈ B
4
= ∃x. x : A

bij→B

card(A)
4
= µz[z ≈ A]

12

In the above, we defined the ordered pair 〈a, b〉 of two infons a and b by using
the standard encoding. Using µ-operator, we can explicitly define the projection
operators πi (i = 1, 2) which retrieves the i-th component of a pair. We then
defined the notions of a function, the domain of a function, the range of a
function and a bijective function succinctly using the projection operators. A ≈
B means that there is a bijection from A to B, namely, A and B are equipotent.
Finally card(A) picks the smallest set from all the sets which are equipotent
with A, and we call it the cardinality of A. The idea behind our definition of
cardinality is the same as that of Bourbaki [1] who uses τ -term.

We conclude this section by noting that we can obtain Finite Infon Theory,
FIT, simply by replacing the Axiom 7, which asserts the existence of an infinite
ordinal, with the following axiom of mathematical induction:

P(0) ∧ (∀x. P(x) ⇒ P(x + 1)) ⇒ ∀x. P(x).

The intended objects of FIT are precisely finite infons, namely infons of finite
length. As ordinals they are exactly finite ordinals and as sets they are heredi-
tarily finite sets, that is, finite sets all of whose members are hereditarily finite.

6 Conclusion

We must admit that ZFC is a well-designed system in which virtually all of
mathematics can be developed. However, if one observes that the notions of
natural number, sequence etc. were introduced into mathematics long before
the notion of set came to be introduced, then it seems worthwhile to look for
an alternative foundational system not based on sets but based on some other
more basic and concrete notions. In this paper, we took the notions of ordinal
and sequence as such notions, and defined an infon as a transfinite sequence of
bits whose length is bounded by an ordinal. We then showed that an infon can
be viewed either as an ordinal or as a set.

We can also observe that finite infons, which are simply sequences of bits
of finite length, are everywhere in the information society. Two noteworthy
examples are internet packets and DNA sequences. We thus see that finite
infons are used, as Turing did, to encode finite information, and we believe that
it is a natural idea to use transfinite infons to encode transfinite information.

We also emphasized the transfinitary computational treatment of infons as
a kind of extension of Turing machines. This is clearly reflected in our choice
of atomic formulas, and in IT we have only two kinds of atomic formulas. The
first kind atomic formulas are proposition variables p and their antiformulas p.
The second are formulas of the form α ∈ a meaning that the content of the
α-th cell of a is 1 and formulas of the form α 6∈ a meaning that the content of
the α-th cell of a is 0. Since p (α ∈ a) and p (α 6∈ a, resp.) are antiformulas
with each other, with each IT formula we could assign its antiformula. In this
way we could build up all the formulas without using negation or implication,
so that we can interpret all the formulas positively. That is, instead of saying
that a formula P does not hold, we can say that P− holds.

13

The term µz[P(z)] may be considered as a transfinite generalization of
Kleene’s µ-operator or as a strong form of Hilbert’s ε-symbol. We saw that
thanks to the µ-operator we could name sets like ω explicitly within IT whereas
in ZFC ω can be introduce only in the meta language.

In section 5 we saw that IT and ZFC are equiconsistent and this means that
these two systems have the same power of developing mathematics in them.
However, as we have just pointed out above, we think that IT is easier to work
directly in it than to do so in ZFC.

IT is a foundational system, just like ZFC, and as such we must accept it
directly without appealing to another systems. In this respect, our approach is
the same as that of Conway [3] who developed a theory of numbers and games
using ordinals as fundamental mathematical objects.

Although IT is easier to work within compared to ZFC, it is still inadequate
as a basic system for implementing mathematics in it. The reason is that,
in modern mathematics, we are mostly concerned with properties mathematical
objects enjoy and it is desirable to have a system which can hide implementation
details of objects and make them invisible to the users (that is, mathematicians)
who use the objects. For example, in IT we implemented the ordered pair 〈a, b〉
as a set {{a}, {a, b}}, but what is needed is that an ordered pair should behave
as expected and how it is implemented is not important. We are planning to
use IT as a low level language to implement such a higher level language which
supports above mentioned abstract definition of mathematical objects and can
be used as a basis for the Natural Framework (NF) [12, 13] for developing
mathematical proofs formally on a computer.

The idea and motivation for our design of Natural Framework is similar to
Kahn’s idea of Natural Semantics [8], but NF put more emphasis on logic than
on computation. We hope that we would be able to make logic and computa-
tion closer by extending traditional computation which is inherently finitary to
tranfinitary computation on infons.

Appendix: Basic Properties

We establish basic properties of IT in this section.

• α ≤ α.

Immediate by Axiom 1.

• α ≤ β ∧ β ≤ γ ⇒ α ≤ γ.

Immediate by Axiom 3.

• α ≤ β ∧ β ≤ α ⇒ α = β.

Immediate by Axioms 1 and 3.

• α ≤ β ⇔ α < β ∨ α = β.

14

To prove ⇒ , suppose that α ≤ β. If α = β, then we are done, and if not, then
we have α < β. To prove ⇐ , suppose that α < β ∨ α = β. In the first case we
have α ≤ β. In the second case we have α + 0 = α = β. Hence we have α ≤ β.

• (∀x. x < α ⇒ x < β) ⇒ α ≤ β.

Suppose that ∀x. x < α ⇒ x < β and ¬(α ≤ β). Then by Axiom 4 we have
β < α. This implies β < β which is a contradiction.

• α 6= 0 ⇒ α = |{x | x < α}|.

Let us write γ for |{x | x < α}|. Then we have ∀x. x < α ⇒ x < γ so that we
have α ≤ γ. On the other hand, since ∀x. x < α ⇒ x < α, we have γ ≤ α.
Hence α = γ.

• 0 + α = α.

Suppose otherwise, and let α be the smallest ordinal such that 0 + α 6= α. By 1
we see that α is nonempty and can be written as α = |{x | x < α}|, so that by
2 we have 0 + α = |{0 + x | x < α}| = |{x | x < α}| = α. This is a contradiction.

• 0 ≤ α.

Immediate from the above theorem.

• ¬(α < 0).

Suppose that α < 0. Then by the above theorem, we have α < α which is a
contradiction.

• α 6= 0 ⇔ 0 < α.

Suppose that α 6= 0. Then we have 0 < α since 0 + α = α. Next, suppose that
0 < α and moreover α = 0. Then we have 0 < 0 which is a contradiction.

• α < 1 ⇒ α = 0.

Suppose that α < 1 and suppose moreover that α 6= 0. Then, by the previous
theorem, we have 0 < α < 1 = 0 + 1 contradicting Axiom 5.

• α < β ⇔ α + 1 ≤ β.

Suppose that α < β. Then α + x = β for some x 6= 0, that is, 1 ≤ x. So, we
have x = 1 + y for some y. Hence (α + 1) + y = β, that is, α + 1 ≤ β. Next,
suppose that α + 1 ≤ β. Then we have α + (1 + x) = β for some x. Now, if
α = β, then we have 0 = 1 + x ≥ 1 > 0, which is a contradiction.

• α + β = 0 ⇒ α = 0 ∧ β = 0.

15

We first prove α + β = 0 ⇒ β = 0 by showing its contraposition: β 6=
0 ⇒ α + β 6= 0. Suppose that β 6= 0. Then we have α < α + β. Since 0 ≤ α,
we have 0 < α + β, that is, α + β 6= 0. We have thus seen that β = 0. Then,
α = α + β = 0.

• β < γ ⇒ α + β < α + γ.

Suppose that β < γ. Then we have γ = β + x for some x 6= 0. Hence α + γ =
α + (β + x) = (α + β) + x, that is, α + β < α + γ.

• α + β = α + γ ⇒ β = γ.

This follows from the above theorem by using Axiom 4.

• a ∈ A ⇒ a < |A|.

Suppose that a ∈ A. By Axiom 8 we have ∀x. x ∈ A ⇒ x < A. This means
that ∃z. ∀x. x ∈ A ⇒ x < z. So, by Axiom 9, we have a < |A|.

• |A| ≤ A.

We have ∃z. ∀x. x ∈ A ⇒ x < z as in the previous theorem. So, by Axiom 9,
we have |A| ≤ A.

• |0| = 0.

By Axiom 6 we have |0| ≤ 0, so that we have |0| = 0 since 0 < 0 is impossible.

• |a| = 0 ⇔ a = 0.

Suppose that a 6= 0. Then we have some x such that x ∈ a. Hence 0 ≤ x < |a|.
This proves ⇒ -part of the theorem. The ⇐ -part follows from the previous
theorem.

• a 6∈ 0.

Suppose that a ∈ 0. Then we have a < |0| = 0, which is a contradiction.

• a = 0 ⇔ ∀x. x 6∈ a

Immediate by the definition of = and by the previous theorem.

• |a| < |b| ⇒ a < b.

Suppose that |a| < |b|. Then we have |a| + 1 ≤ |b|, so that (|a|+ 1) ↑≤ |b| ↑.
On the other hand, by Axiom 6 we have a < (|a|+ 1)↑≤ |b| ↑≤ b. This implies
a < b.

• a ∈ 1 ⇔ a = 0.

16

Suppose that a ∈ 1. Then by Axiom 8 we have a < 0, and this implies a = 0.
Now, we see that 1 is a nonempty set since 1 6= 0. Hence we have some x
such that x ∈ 1, but this x must be 0 by the above argument. This proves the
⇐ -part of the theorem.

We need some more notational conventions to continue our list of theorems.

α− β
4
= µz[α = β + z].

aα
4
= α ∈ a.

aˆb
4
= µz[∀α. (α < |a| ⇒ zα = aα) ∧ (z|a|+α = bα)].

We can prove the following properties whose proofs we omit.

• β ≤ α ⇒ α = β + (α− β).

• α < |A| ⇒ ∃x. α ≤ x ∧ x < |A| ∧ x ∈ A.

• (α < |a| ⇒ (aˆb)α = aα) ∧ ((aˆb)|a|+α = bα).

• |aˆb| = |a|+ |b|.
• |α↑ | = α.

• ∃x. P(x) ⇔ P(0) ∨ µx[P(x)] 6= 0.

• ∀x. P(x) ⇔ P(0) ∧ µx[¬P(x)] = 0.

References

[1] Nicolas Bourbaki, Elements of Mathematics, Theory of Sets, Hermann and
Addison-Wesley, 1968.

[2] Paul J. Cohen, Set Theory and the Continuum Hypothesis, Benjamin, 1966.

[3] John Horton Conway, On Numbers and Games, second edition, A K Peters,
2000.

[4] Keith Devlin, Logic and Information, Cambridge University Press, 1991.

[5] Keith Devlin, Jon Barwise’s papers on natural language semantics, Bull.
Symbolic Logic, 10, pp. 54 – 85, 2004.

[6] Jean-Yves Girard, Paul Taylor and Yves Lafont, Proofs and Types, Cam-
bridge University Press, 1989.

[7] David Hilbert and Paul Bernays, Grundlagen der Mathematik, vol. 1,
Springer, 1934.

[8] Gilles Kahn, Natural Semantics, STACS 87, Lecture Notes in Computer
Science 247, pp. 22 – 39, 1987.

17

[9] Stephen C. Kleene, General recursive functions of natural numbers, Math.
Ann., 112, pp. 727 – 742, 1936.

[10] Kenneth Kunen, Set Theory – An Introduction to Independence Proofs,
North-Holland, 1980.

[11] Dag Prawitz, Natural Deduction, Dover, 2006.

[12] Masahiko Sato, Theory of judgments and derivations, in Arikawa, S. and
Shinohara, A. eds., Progress in Discovery Science, Lecture Notes in Artifi-
cial Intelligence 2281, pp. 78 – 122, Springer, 2002.

[13] Masahiko Sato, A framework for checking proofs naturally, Int. J. of Intel-
ligent Information Systems, to appear.

[14] Alan M. Turing, On Computable Numbers, with an Application to the
Entscheidungsproblem, Proc. London Math. Soc., 42, pp. 230 – 265, 1937.

[15] Alfred North Whitehead and Bertrand Russell, Principia mathematica, vol.
1, Cambridge University Press, 1910.

18

