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byuwis o

¢ mFor the study of intermediate logics, pseudo-Boolean algebras play a
v.fary 1mp6rtant role as their models. So an investigation into the algebraic
-n0H

structure of pseudo-Boolean models seems essential. For dealing with

"é‘sé }hodels, we already know two operations on models, i.e., Cartesian
product and the pile operation. But these operations are incomplete in the
s‘erjlls’e that there exist finite models which can not be obtained from the
two element model S; by these operatlons alone. There has been a pro-
bieﬁm,of finding a complete set of operations in this sense. (See Hosoi 47,
and Hosoi and Ono [81) 7

Our main result (Theorem 3 7) solves this problem. More precisely,
in §2, we shall introduce the notion of the patch operation on models, and
in ‘§3, we shall show that Cartesian product and the patch operation are
complete in the sense that any finite model can be obtained from S; by
these operations. '

Further, we shall study intermediate logics through pseude-Boolean
models. The notion of slice defined axiomatically by Hosoi will be char-
acterized algebraically in §4. To do this, we shall define the notlon of
the height of pseudo-Boolean models. We shall prove that thlS height
gggﬁeilﬁnds to the index of slice to which belongs the logic characterized
by the model.

m d;fgép,’{ we shall apply the main result to obtain an easy. method for

%nﬂygl the helght of models and a theorem on the 1mmed1ate predeces—

sors of certam logics.

Communicated by S. Hitotumatu., November 2, 1972.
* Department of Mathematics, University of Tokyo, Hongo, Tokya.



142 MasAaHIkO SAaTO

Throughout this paper, we expect some familiarity with [5] and [107],
since some notations and definitions are borrowed from them without spe-
cial mentioning, : N T

The author wishes to express his hearty thanks to Profs. T. Hosoi and
H. Ono for their helpful suggestions andlkmd dlscusmons with the author.
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§1. Preliminaries

Propositional variables are expressed by the letters ay, @4,.... By a
logic we mean an intermediate propositional logic. By a model we always
mean a pseudo-Boolean algebra (PBA) w1th at least two elements. (See
e.g. [1], [12]). We write 1 (0) for the max1mum (mmlmum respectlvely)
element of a model where 1 is the de51gnated We use four loglcal con-
nectlves A, V,—, and ~ . Same symbols are used for the correspondmg
operations in models. It should be noticed that any model M determmes
a logic L(M), that is, the set of formulas vahd m 1t and for any loglc
L there exist a model M such that L=L(M). ' ’ ,

Any model M is a partially ordered set by deﬁnitibn. For any ele-
ments p, ¢ (p<q) in a model M, we write [ p, ¢ ] for the set {x'l pr
<g}, and call it an interval in M. 1t is important to remark that xa
is also a PBA by the natural ordering in it (see [2D. ,

If the ordering in M is linear, we say M is a llhear model We
write L, for the linear model with n+1 elements. Since any mﬁmte
linear model is characteristic for one and the same logic, we wrlt‘eI ‘L for
such a model. We put S,=L(L,) (1sn<w).

The following lemma is well-known.,

Lemma 11 §25,2 25,225,

Clearly, the set {S,|1Sn<w} covers all logid§ Which have a linear
model.

The following theorem is due to Dummett [3] We remark here that
this theorem can be proved easily by the decomposmon theorem of McKay
[9] and by Lemma 1.9 in Hosoi and Ono [7].

Theorem 1.2. A logic L has a linear }nodel if ZeL, where Z=(a,
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Fand al):\/'(fa‘y _’.’rﬂ‘-b)-l

Ao % o boe o o
The definition of slice by Hosoi is as follows:

j %13 #,={L|L+Z=S5,}.
.9

ve definé the pile operation (see also [5]).

1.4. Let M, N be two models. We define K=M 1N to
be the»model such that there is some d €K salisfying the conditions (i)
K=M'UN'Cwhere M'={peK|pzd} and N'={peK|psd}, (i) M
ig.dsomorphic with M', and (iii) N is isomorphic with N'. By these iso-
mg&;s’;‘w we identify M with M' and N with N'. Hence d=0p=1y.

sdfrr o
sl §2. Patch Operation

In this section, we first define the patch operation on partially ordered
sets: « ‘This- operation defines an ordered set R from a triple (P, Q, f),
where P, () are partially ordered sets and f is an isomorphism from a
subset of P to a subset of ). Afterwards, we consider the case that P
and Q are PBAs.

Now let 4 and B be two disjoint sets and f: 4’—B’ be a bijection,
where A’ (or B’) is a subset of 4 (or B). Define an equivalence relation
="on AUB by that x=y iff x=y or x=f(y) or y=f(x). We write
AOsB for AUB/=, and call it the patching of 4 and B by f. By
identifying those elements in 4 B that are equivalent w.r.t. =, we shall
onslder that 4<,B=AUB and 4'=B'=AnB.
bais bfbiv suppose that 4 and B are partially ordered sets and f: 4'—B’
i9'kf oider isomorphism. Then we can define an order < on AO,B as
folbedsh
an ‘oS’ theiitioned above, we consider that AOB=AUB. We denote the
ohdétinySof A (or B) by =4 (or <p). Define a relation < on 4UB by
that x< y iff (x, ye4 and x<,y) or (x, yEB and x<zy) or (x€B,
yEA and for some z2€ANB, x<pz and z=5,y) or (x€4, yeB and
for some z€ANB, x< 4z and z=py). Then it is easy to see that <
is the Wweakest’order on 4U B which preserves both <, and =,.
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Example 2.1. We show an example by Hasse diagrams, where f is
an isomorphism which maps a, b, ¢, and d in 4 to a, b,c, and d in B.

A B
Fig. 1

As seen in the above example, even if 4 and B ‘are'PBAs the patch-
ed partially ordered set 4, B is not necessarily a PBA, So, to make
AOsB a PBA we must put some restrictions on f. The following theo-
rem gives a sufficient condition for 4B to be a PBA.

Theorem 2.2. If A.and B are PBAs and f is an isomorphism from
an ideal A’ of A to a filler B’ of B, then ACQB is also a PBA.

Proof. First remark that AN B=[0,4 15], by the identification stated
above. For any a4 we define a~€ AN B by putting a~=a A lp, and
for any be B, b*€ AN B is defined by b*=bV 30,. It is clear that a”=<a
and b<b*. Further, a—a~ (bt—4*) is a homomorphism from 4 (B, resp.)
to ANB. ) -

(I) Existence of inf{a, b}. o

Since other cases are trivial, we only consider, the .case that ac A—B
and b€ B. We prove that inf{a, b}=a"Agb. Clearly, e Apb<b, and
a"Apb<a~<a. Hence a~Apgb is a lower bound of {g, b}., On the other
hand, let ¢ be any element such that ¢<e and ¢< b.’ By the definition
of the ordering on AQB, c<a implies the existence of some x€A4NB
such that c<x<a. Hencg x=x"%a".. So c'_s_a‘..‘ Thus c<a Apgh.
Therefore we see that a- A Bb:inf{a,‘ b} o

(I) Existence of sup{a, b}.

This can be proved as the dual case of (I).

Thus we see that ACQ,B is a lattice. We denote the lattice opera-
tions on AQB by A and V.

A T
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(IlI) Existence of max{x|aA x <b}.

We consider four cases so that they cover all possible cases. In any
of these cases we prove that max{x |aAx<b}=c for a certain ¢. We
dothis in: two steps. In (Step 1) we prove that if aAx<b then x=<c.
m,(w'm) we prove that aAc<b. From these two steps we have that
twa{w|aAx=b}=c. In the following x will denote an arbitrary element
such that e A x<b.

(’(i;)(x\The case that ac 4 and be A.

We shall prove that max{x|aA x<b}=a—,b.

‘a -(Step 1) If x4 then by the definition of a—4b, x<a—4b. Sup-
ﬂs@that x€B—A. Then there is some y€ AN B such that aAx < y<
b. Hence a " Apx=a"AxZaAx=<y. So x<a —pgy. Then since a >4
JEAN B, aN(a™—py)=a"A(a —py)<y. Hence a —py<a—,y<a—
4b. Thus x<a—,b.

"B”"';(S‘tep 2) Obvious.

(ii)) The case that ac A— B and b B— A.

We shall prove that max{x|aAx=<b}=a —zb.

(Step 1) Suppose that x= 4, then anx 4. Then we have be 4,
since aAx<be 4. This contradicts to b€ B— 4. So we see that x€ B.
Now, since a”<a, we have ‘that a Agpx=a AxSaAx=b. Hence x<
a —pgb.

(Step2) By definition, a~A(a~—3b)<b. Clearly, e —zbe B. . Then
by (I), an(a——gb)=a" A(a~—zb)<b.

(iii) The case that a€ B— A4 and b€ A— B.

We shall prove that max{x|aA x<b}=a*—4b. _

(Step 1) Since aAxEB— A4, there is some y& AN B such that aA
x<y<b. Suppose x€B. Since e*A(a—py)=(aA(a—py)'Z y*'=1y,
we have a—py<a*—,y. Then, x=<a—py=<a*—py=<a*—,;y=<a*—,b.
Next, suppose x€ A—B. Then, aAx~=aAx=<b. Hence (aAx")V0,=b.
Since a, x~, and 0, are in B, we can use the distributive law. Hence,
BVOIA(x~V0,)<b. So a*Ax-<b. Since a*€B and x&A—B, a* A
x=a*Ax~<b. Thus we have x <a*— b, since a*, x, and b are in A.
(Step 2) aA(a*— b)<a*A(a*—,4b)<b.

(iv) The case that ac B and be B.
We shall prove that

R
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max{xla/\xéb}:{
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a_’Bb

15— 4(a—pb)

(if a—’BbE A)

(otherwise).

First we consider the case that a—gbe 4. Put c=1p— ,(a—3zb).

(Step 1) If x€B then x<a—gb=<ec.
x=aA(lgAx)=bh.

a—gb are in 4, we have x<ec.
(Step 2) By the definition of ¢, a Ac=aA(lgAc)saA(a—3pb)<b.
Next, suppose c=a—gbeB— 4.

(Step 1) If x= B, then by the definition of ¢, x<c.

Suppose x& A—B. Then gA

Since 1z3Ax€ B, 1zAx<a— gb.

Since 1p, x, and

If x€4A-B,

then aAx~ <b, where x~€B. Hence x~<c& A. Therefore x~ & A.
This is a contradiction.
(Step 2) Obvious.

Q.E.D.

From the above proof we have the following table for the calucula-

tion of the logical operators.

XAy yeEA—B yeANB yEB—-A4
xA—-B XALY XALY x~Apy
x€ANB XAy xAay xApy
x€B-4A4 xApy” XABY xAgYy
xVy yeA—B yEANB yeB—-A
x€A—B xV,y xV,y xVay*
x€ANB xV,y xV Yy xVpYy
xeB—A xtV,ay xVgy xVpy
Xy yeA-B  yeAnNB  ycB-A
x€A-B X uy XY X Y
x€AnB Xy Xy x_’é)'
xE€B—-A xt—,y 1g—a(x—pY) {13—’A(x—’ny') (if x—pyed)
‘ x—pYy (if x—py€d)
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_._jx

x€A—B | " gx~
x€ANB —jBx
x€B-A4 | 1p—4(px) (if px€4)

“px (f Tpx g d)

‘Remark. If Jf is a mapping which identifies 0, and 1p, then A, B
=A1B. ‘Hence the patch operation is a generalization of the pile opera
tion.

§3. Completeness of the Patch Operation

Definition 3.1. A4 partially ordered set C is called an n-cube if it
is isomorphic with the n-dimensional Boolean algebra.

The following theorem clarifies the local structure of a PBA. This
theorem will be used in the last section.

Theorem 3.2. Let be that P is a PBA and p,, p;,..., p, are distinct
maximal elements in P—{1}. Then [ p;A---A p,, 1] is an n-cube.

Proof. As an inductive hypothesis, we assume that the theorem holds
for m<n. Consider an n-dimensional Boolean algebra B=%P({1,2,..., n}).
We define a: B—[ piA---A p,, 1] by putting a(K)— /\ \ Pi for any Kc
{1, 2,..., n}. (We consider a(¢)=1) Then, clearly, a(KU Ly=a(K)A
a(L)

We first show that « is injective. To derive a contradiction, let us
assume that K#L and a(K)=a(L). Then a(KUL)=a(K). Hence,
without any loss of generality, we have only to consider the case that
K={1,2,..,i} and L={1, 2,...,i, i+1}. That is,

a(K)=pA---Ap;=p,
a(L)=pA pia=p.

Hence p;,;2 piA A p;. Now by the inductive hypothesis, [ p; A--- A p;,
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1] is an i-cube. So, p;,, must coincide with one of P1s---» Pi» Since p;y
is maximal in [ pyA---A p;, 1]—{1}. This is a contradiction.

Next, we prove that «a is surjective. Take any r=2p,A---Ap, We
put p=piA---Ap, and g;=pA--“Ap; 1A pisa A+~ A p,. Then,

rAqg;2p (1gign).

First suppose that rAg;> p for some i. If r=¢q; we can prove that there
is some KC{py,..., pi-1, Pi+1>--.» Ps} such that r=a(K) by the inductive
hypothesis. Hence we may assume rz£ g;. Then we have ¢;>rAq;> p.
Since p;V¢;=1, p;Aq;=p, and P is a modular lattice we get 1>(rAg,)
V p;> pi. This contradicts that p; is maximal in P—{1}. Thus, there
only remains the case that rA¢q;=p for any . Then p=ii}1 (rAg))=rA

g;=rAl=r. Hence r=a({1, 2,.., n}).

Thus we have seen that «: B—[p,1] is a bijection. Further, if
KcL, then a(l)=a(KUL)=a(K)Aa(L). Hence a(K)za(L). This
means that « is an anti-isomorphism. Since B is self-dual, we see that
[p,1] is an n-cube. Q.E.D.

i<a

Dually we have the following

Corollary 3.3. Let be that P is a PBA and p,, p,,..., p, are dis-
tinct minimal elements in P—{0}., Then [0, p,V---V p,] is an n-cube,

For any p in P, since [0, p] and [ p, 1] can be regarded as PBAs,,
we can use the above results to investigate the ‘‘neighborhood” of p.

The operation of patching naturally suggests the ‘‘inverse’ operation,
namely, the cut operation. But, instead of defining the cut operation, we
define the notion of section.

 Definition 3.4. A subset S of a PBA P is called a section of P,
if it satisfies the following conditions. '

(i) S=[gq, p] for some p, q such that q=p.
@Gi) P=[0, pJu[g, 1]

S is called proper if 0<¢= p<1.
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.« Examples: (i) Hosoi [6] proved that the set % of all intermediate
logics is a PBA. Each slice &, (n=1, 2,..., ®) is a section of Z. .

(ii) If two PBAs 4 and B are patched to make a PBA A{,B then
AN B is a section of 4O, B.

Now we want to consider the following problem presented by. Hosoi
and Ono [8]: .
.+ “By what operations can all finite PBAs be obtained from 1-cube
15,7 ,
.. As Hosoi [4] has remarked Cartesian product and the- plle operation
are not sufficient, since the PBA of (Fig. 2) can not be obtained from .S,
&y these operation. ,

A

F T
Fig. 2

We shall show that Cartesmn product and the patch operatlon generate
__’_,,the finite PBAs from 8§,. Further, we shall see that Cartesian pro-
mt is needed only to obtain n-cube S7. To show this we prepare two
leramas. )

’gk"ix
" Y emma 3.5. If P is an n-cube, then it has no proper section.
11 B

Proof. Let p,,..., p, be the collection of the maximal elements in
P—{1}. Suppose P had a proper section [¢, p]. Then, since 0<g< p
<1, there exist some L, K such that ¢ LcK& {1, 2,...,n} and p=, /\ Pis
g= A p;. Take any j&K. Then p; is neither in [q, 17] nor in |:0 p]
This is a contradiction.

Lemma 3.6. If a finite PBA P is not a cube, then it has a proper
sectwn

Proof: As an inductive hypothesis, we assume that the theorem holds
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for any PBA whose cardinality is less than the cardinality of P. Since
P is finite, there exists a maximal element pin P—{1}. Let r;,ry..., 7,

. &
be the enumeration of the elements such that pvr,=1 Put r= Ar;
j=1
5 A :
Then, pVr=pvVv ATj= /\l(erj)=l. Thus r is the least element such
1= I=

that pVr=1. Put g=pAr.

We shall show that P=[0, pJU[q, 1]. Suppose x&[0, p]. Then
since p is maximal in P—{1}, pvx=1. Hence x=r>gq. That is, x€
Ly 1]; Now, if ¢>0, then we have a proper section [g¢, p] in P. If
q=0, then P=[p, 1]x[r, 1]= S, x[r, 1], since pvr=1and pAr=g=
0. Since P is not a cube, [r, 1] is also not a cube. Hence it has a pro-
per section, say, [¢’, p’] by the inductive hypothesis. Then it is easy to
see that [ ¢’ A p, p’] is a proper section of P.

From the above two lemmas we have the following

Theorem 3.7. Any finite PBA can be constructed from S, by
Cartesian product and by the patch operation, where Cartesian product is
necessary only to obtain n-cube ST from S,.

Remark. Let P be the set of all finite PBA and let Cc={S,, S3,...}.
For any subset § of P, we define § to be the smallest set of ‘ finite PBAs
such that $OS and § is closed under the patch operation. Then we can
see that S=P iff SOC.

Theorems 2.2 and 3.7 give us a very useful criterion to determine
whether a partially ordered set is a PBA or not when it is given in the
form of Hasse diagram.

§4. The Height of Models

In this section, we give a characterization of slice. First we define

the notion of normal chains.

Definition 4.1. Let M be a model. A chain in M of length n is a
finite sequence (c;)osisn Of elements in M such that cq<c,<---<c,. A
chain (c))osisy i5 normal if c;—c;_y=c,_; (1=is<n). The length of a
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chain a=(c))osiss Will be denoled as l().

v+ Definition 4.2. Let M be a model. The height k(M) of the model
M is sup{l(@)|x is a normal chain in M}.

Definition 4.3. We define wffs P,(n=0, 1, 2,...) inductively as fol-
lows:

{ Py =a,, g .
P;=((a;—P;_,)—a;)—a; @EzD.

Now we state our main theorem in this section.

™" Theorem 4.4. Let M and N be two models. If L(M)=L(N) then

-h(M) = h(N).
“ - To prove this we prepare’ some lemmas.

™ Lemma 4.5. S,o5L(M) if h(M)=n.
C o gmn S

. t,&i‘#l"}’maf. Suppose S, L(M).: Let L,={cq, c1,...,c,}, where c,<c;<
e, Clearly (¢))osiss I8 a normal chain. Let f be an assignment
77:ugb‘ction such that f(a;)=c;. Ttiis easy to see that f(P)=c; (0Si=Zn).
“Wence f(P,.;)=cn1<c,<1. Thus P, &S, Thisimplies P, & L(M),
ce S,DL(M). Therefore we have an assignment function g into M
Baeh that g(P,_)<1. Let us'put d;=g(P,) (i=0). Now by Lemma
A3 in [5], the following (a) and (b) are provable in LJ.

C ol (a) Pi,—Pi=ay—a, (i21),
o ( \ . .v ?v
('i (b) Pi-’})iijlz} -1 @EzD.

By (a) we have d,.,<d;. Suppose d,_,=d;. Then by (b), d;,_,=d;—
id;_, =1. Combining these results, since d,_;#1, we have dy<d,<---<
-d,. Again by (b), (d;)esiss iS'a normal chain of length n. Thus A(M)
=2n. '

Now we prove the converse. Suppose A(M)=n. Then there is a

-normal chain (¢;)os:5, Of length n. It is easy to see that C={c,, c1,-..,
cy-1» 1} is a subalgebra of M, i.e., closed under the four logical operations.
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It is also clear that C is isomorphic with L,. Hence S,>L(M).

If we check the proof of the sufficiency of Lemma 4.5 we have the
following

Corollary 4.6. P,_ & L(M) iff h(M)=n.

Now the proof of Theorem 4.4 is immediate from Corollary 4.6. We
also obtain the following theorem which characterizes slice.

Theorem 4.7. L(M)eS, if h(M)=n.

By our characterization of slice we can prove the following theorem

in [5].
Theorem 4.8. If L(M)e¥,, and LIN)E%, then LIMI N)ESL pin

Proof. By the hypothesis, we have two normal chains (c;)ogism in
M and (d;)psiss in N. It is easy to see that cy—d,_;=d,_;. Hence
dg, dq,...s dy_1, €gy C1y.-.y € IS 2 normal chain of length m-+n. Hence
A(M 1t N)Zm+n. Now suppose (M 1 N)>m+n. Then we have a
normal chain (¢;)ogismin+1 in M TN, Clearly there is some k& such that
cg-1EN—{1y} and ¢,e M. Then ¢y, cy,..., €4-i, Ly is a normal chain of
length k, and c,, C4415--.» Cmigs1 1S @ normal chain of length m+n+1—k.
Hence k<n, and m+n+1—k<m. That is, n+1<k<n. This is a
contradiction. ‘

Following Ono [107], a Kripke model is a partially ordered set. Let
K be a Kripke model. A subset J of K is called closed if p&J and ¢g=
p implies geJ. It is a well-know fact that the set Px of all closed sub-
sets of K is a model, i.e., a PBA. It can be easily seen that K and Pg
is characteristic for the same logic (see [17], [27]). We write L*(X) for
the logic characterized by K. For the definition of the height of . K (de-
noted as h*(K)), we refer to [10].

Now using Theorem 4.7, we give another proof for the following theo-
rem due to Ono,
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Theorem 4.9. If h*(K)=n then L¥K)eZ, (1Sn<o).

Proof. 1t suffices to prove the case that n is finite. Since A¥(K)=n,
we have a chain in K such that

¢)) €1 <cy< <y

For any ceK, put T,={d|dXxc}. Clearly T.,€Px. We prove that if
c<c’' then T,»T,,=T,.. Put R=T,-T,.. Then

2) T.NRcT,,

and RO T,.. Suppose RZT, and let d be any element in R—T,..
Then d<¢’, since d¢ T,.. This implies ¢’ER, since d€R and R is
closed. On the other hand, ¢’ T, since ¢c<c¢’. Hence by (2), /e T,.
This is a contradiction. ‘

. Therefore the following chain in Py is a normal chain of length n:

K; Tc;;?— Tc:;?—'” 3 Tc,.'
Thus,

©)) h(Pg)2 h*(K).

Now suppose m=h(Pg). Then we have the following normal chain
WPy NNeN,& SN,
18t d, be any element in N,—N,_,. Forany ceK, put M,={d|d=c}.
Clearly M,ePy;. We have Nn, . N My &N, _,, since otherwise M, C
N,_;. Let d, be any element in (N,-,NM;)—N,_,. Then d,eN,_,
—N,_, and d;>d,. Continuing the same process, we have the following
ghain in K: d,<d,<---<d,. Hence,

(O] h(Pg) = h*(K).

By (3) and (4), we get h(Px)=h*(K).

§5. Applications

Let us consider a finite PBA P. Let a be any element in P and let
by, by,..., by be the enumeration of elements such that b,—a=a. (Since
l—a=a, k=1.) Put b=b;A---Aby. Then b—a=(b;A---Aby)—a=b—
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(by—--(by-1—(by—a))---)=a. 'This means that b is the least element
such that b—a=a. Define a mapping 1: P— P by A(a)=b.
Now wé define a sequence {c;};., . as follows: ‘

CO=0,

Carr=4(cy) (k20).

We call this sequence the central sequence in P. We can easily see that
if n is the least integer such that c,=1, then cy=c,,;=0 and c,<c;<

---<c,=1. This sequence has the following property.

Theorem S5.1. Let {c;} be the central sequence in P, and n be the
least integer such that c,=1. Then h(P)=n. o

Proof. Since 0=cy<c,<--<c,=1 is a normal ‘chain, A(P)=n.
Suppose A(P)>n. Then we have a normal chain dj< di<<d,<d,,,.
Clearly ¢g<d,. Then from the next Lemma 5.2, d,—cy,=c, Hence
¢, £d;. Continuing the same process, we see that ¢, < d,,..., ¢, <d,.
Thus we obtain 1=c¢,<d,<d,,;. This is a contradiction. '

Lemma 5.2. Ifa>b2c and a—b=b, then a—c=c.

Proof. Let d=a—c. Then aAd=aA(a—c)Sc<b. On the other
hand, a—b=5b. Hence d<b. Since b<a, d=aAd=aA(a—c)<c. Clear-
ly d=a—c=c. Therefore d=c.

Theorem 5.3. If h(P)=n, th:en Lew cinn]lis a cube.

Proof. Since other cases can be proved similarly, we only show that
[0, ¢, ] is a cube. Let {p;, ps,..., p4} be the set of minimal elements in
P—{0}. Then it is easy to see that x —»0=0 iff x=p; for 1<j<k.
Hence ¢;= _\k/l p;- Then from Corollary 4.3 we have that [0,¢,] is a
P
cube.

By Theorem 5.1 and 5.3 we can easily calculate the height of a model
if its Hasse diagram is given.

A logic L is called an immediate predecessor of another logic L’ if
LZL’ and there are no logics between L and L/, We write LL’ to
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denote that L is an immediate predecessor of L’.

Concerning immediate predecessors of S,, Hosoi proved that if n>=3
then S,,,<S,, S,n S, 1 SIS, and S,N 8§ 1 5§17 5,<S,. (See Ono
[117).) Since & is a PBA, we can apply Theorem 3.2 to obtain the fol-
lowing theorem. We owe this remark to Prof. T. Hosoi.

Theorem 5.4. S,n S, 1 SiNS; 1S215<S,n8, 152
S,nS,152nS; 1521 85,<5,n5,15218,
SperN S 1 5%4 S,nS; 18§ and

SN S 1531 5145;«0 S, 181 S,.
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