HomMmolicoNIC LiIsp

Yosuke Fukuda

Graduate School of Informatics, Kyoto University

The goal of this work and the current status

« Ultimate goal To give a reasonably minimal condition of “program se-

mantics” to define various program semantics
« Current status A Lisp implementation that can define a lot of program-

ming language features for it, in the language itself

Homoiconic Lisp (HLisp)

The notion of “Homoiconicity”

According to Alan Kay [Kay 1969], a language is
called homoiconic it its internal and external rep-

resentations are essentially the same.

Feature GitHub Repository

 HLisp is a small fragment of Scheme with a first class macro mechanism

» [t can write a lot of constructs (e.g. if-expression, recursive function
definition, and quasi-quotation) as user-defined programs

» [t is based on a simple extension of SECD machine [Landin 1964] with a

few primitives

Macro closure, a way to achieve homoiconicity

The implementation of Homoiconic Lisp is available at
https://github.com/yf-fyf/hlisp

The notion of macro closure is a function closure to manipulate program, designed analogously to the closure of A-abstraction

Intuition of its computation

(macro (x| --- xp) M) Ny -+ Nyp) ~ (eval M|z = (quote Nj),--- ,x, = (quote Ny)|)

Example The first program shows a usage of macro closure (macro abstraction), that corresponds to the second one

I ((macro (x y) x) (print 123) (print 456)) 1 (eval ((lambda
2;: => 123 (as a side-effect) 2 => 123 (as a

(x y) x) '(print 123) '(print 456)))
side-effect)

An extended SECD machine with macro closure, ESECD
Syntactic category

Constant c:=f]| f | quote | eval Stack Su=mnil | U: S5
Term M,N:=c|z| o.M | a.M|QMN | [M] Environment FE :=nil | (z,U) = E
SECD Value U x=c|{(Az.M),E) | {(Ax.M), E) | [M] Control string C' :=ret | back |call:: C' | M :: C
Dump D :=halt | (S,E,C,D) | (M, C, D)
Transition rules (with some omissions) Example (\z.1) (print 0) | 1 (without any printing effect)
(S, E, c: C D> (c:: S, K, C,D) (S, E,(@(\z.1) (print 0)) :: ret, halt)
(S, E,x:: C,D)~ (U: S E, C, D) if U = Lookup,(E) ~ (S, E,(\z.1) :: back, ((print 0), ret, halt))
(S, E,(Ax.M):: C,D) ~ ((Ae.M),E) :: S, E, C, D) ~ ({(Az.1), E) i+ S, E,back, ((print 0), ret, halt))
(S,E,(\z.M) :: C,D) ~ ({((Mx.M),E) :: S, E, C,D) ~ {([print 0] :: ((Az.1), E) = S, E, call :: ret, halt)
(S, E,(QM N) :: C, D) ~ (S, E, M :: back, (N, C, D)) ~ (nil, (z, [print0|) :: F,1:: ret, (eval :: S, E, call :: ret, halt))
((Ax.M' E'Y :: S, E,back, (N, C D>> s (M. M',E"Y = S,E, N ::call :: C,D) ~ (1 ::mil, (z, [print 0]) :: F,ret, (eval :: S, E, call :: ret, halt))
(\z.M',E'Y - S, E,back, (N, C, D}) ~s ([N] = Xa.M',E"Y - S, E, call:: C,D) =~ (l:eval: S, E, call: ret, halt)
(U = {(Ax.M"),E"Y :: S, E.call :: C',D) ~ (nil, (z, U) :: ', M' ::ret, (S, E, C,D)) ~ (1: 5, E, ret, halt)
([N] = {(Az.M"),E"Y = S, E,call :: C, D) ~ (nil, (z,[N]) :: E', M’ :: ret, D')
(U ::quote :: S,E,call: C, D)~ (U: S FE,C,D)
([M] :eval :: S, F,call :: C,D) ~ (S, E, M :: C, D)
(U ::eval : SEcall“ D)~ (U: S E,C,D) if U is not a code
(U :: S, E ret, (S E C D’>> ~ (U= S E', C' D"
Property of ESCD Future work
The “correctness” of ESCD is shown through a A-calc. as in [Plotkin 1975] e Fill the gap between ESECD and HLisp, since the
Thm If M is a closed term, then TFAE: former has no primitive that produces side-effect
« M || Vin Ag (Note: Ay is an extension of A-calc. with macro closure) Iixtend the theory and implementation to cover

e (nil, nil, M :: ret, halt) || U in ESECD
where V' and U denote the “same” value (formally, defined as in [Plotkin 1975))

other evaluation strategies (Adding a hook oper-
ation to variable lookup may achieve this)

IXATEX TikZposter

https://github.com/yf-fyf/hlisp
https://github.com/yf-fyf/hlisp

