
Automated Verification of Functional
Correctness of Race-Free GPU Programs

Kensuke Kojima1,2, Akifumi Imanishi1, and Atsushi Igarashi1,2

1 Kyoto University, Japan
2 JST CREST, Japan

Abstract. We study an automated verification method for functional
correctness of parallel programs running on GPUs. Our method is based
on Kojima and Igarashi’s Hoare logic for GPU programs. Our algorithm
generates verification conditions (VCs) from a program annotated by
specifications and loop invariants and pass them to off-the-shelf SMT
solvers. It is often impossible, however, to solve naively generated VCs
in reasonable time. A main difficulty stems from quantifiers over threads
due to the parallel nature of GPU programs. To overcome this difficulty,
we additionally apply several transformations to simplify VCs before
calling SMT solvers.
Our implementation successfully verifies correctness of several GPU pro-
grams, including matrix multiplication optimized by using shared mem-
ory. In contrast to many existing tools, our verifier succeeds in verifying
fully parameterized programs: parameters such as the number of threads
and the sizes of matrices are all symbolic. We empirically confirm that
our simplification heuristics is highly effective for improving efficiency of
the verification procedure.

1 Introduction

General-purpose computation on graphics processing units (GPGPU) is a tech-
nique to utilize GPUs, which consist of many cores running in parallel, to ac-
celerate applications not necessarily related to graphics processing. GPGPU is
one of the important techniques in high-performance computing, and has a wide
range of applications [21]. However, it is hard and error-prone to hand-tune GPU
programs for efficiency because the programmer has to consider cache, memory
latency, memory access pattern, and data synchronization.

In this paper we study an automated verification technique for functional
correctness of GPU programs. We empirically show that our technique can be
applied to actual GPU programs, such as a matrix multiplication program opti-
mized by using shared memory. Because shared memory optimization is a tech-
nique that is widely used when writing GPU programs, we believe that it is an
encouraging result that we could verify a typical example of such programs.

We focus on race-free programs, relying on race detection techniques that
have been studied elsewhere [16, 1]. Race-freedom allows us to assume an ar-
bitrary scheduling of threads without changing the behavior of a program. In

particular, we can safely assume that all threads are executed in complete lock-
step (that is, all threads execute the same instruction at the same time). As
observed by Kojima and Igarashi [10], such an assumption makes it possible to
analyze a program similarly to the sequential setting.

The basic idea is standard: our algorithm first generates verification condi-
tions (VCs) from a program annotated with specification and loop invariants,
using Kojima and Igarashi’s Hoare logic for GPGPU programs executed in lock-
step, and then passes the generated VCs to off-the-shelf SMT solvers to check
their validity.

The VCs generated in the first step are, however, often too complex for SMT
solvers to solve in reasonable time. VCs tend to involve many quantifiers over
threads and multiplication over integers. Quantifiers over threads arise from as-
signment statements. When an assignment is executed on a GPU, it modifies
more than one element of an array at a time. This means that the VC corre-
sponding to an assignment says “if there exists a thread writing into this index,
. . . , and otherwise,” Also, the termination condition of a loop involves a
quantifier over threads, saying “there is no thread satisfying the guard.” Mul-
tiplications over integers often appears in GPGPU programs as computation
of offsets of arrays in a complicated way. This also increases the difficulty of
the verification problem because nonlinear integer arithmetic is undecidable in
general.

To overcome this difficulty, we devise several transformations to simplify VCs.
Some of the simplification methods are standard (e.g., quantifier elimination) but
others are specific to the current problem.

We implement a verifier for (a subset of) CUDA C, conduct experiments,
and show that our method successfully verifies a few realistic GPU programs.
Specifically, the correctness of an optimized matrix multiplication program using
shared memory is verified, without instantiating parameters such as sizes of
matrices and thread blocks. We also empirically confirm that our simplification
heuristics is indeed highly effective to improve the verification process.

Contributions. Our main contributions are: (1) a VC generation algorithm for
(race-free) GPU programs; (2) several simplification procedures to help SMT
solvers discharge VCs; (3) implementation of a verifier based on (1) and (2); and
(4) experiments to show that our verification method can indeed be applied to
realistic GPU programs. Our approach can successfully handle fully parameter-
ized programs, that is, we do not need to fix parameters such as the number
of threads and sizes of arrays, unlike much of the existing work (for example,
GPUVerify [1] requires the user to specify the number of threads).

Organization. The rest of the paper is organized as follows. Section 2 explains
the execution model of GPU programs on which our verification method is based.
Section 3 describes our VC generation algorithm. Section 4 introduces several
methods to simplify generated VCs. Section 5 reports our implementation and
experimental results. Section 6 discusses related work, and finally we summarize
the paper and discuss future directions in Section 7.

/*@ requires len == m * N;

ensures \forall int j; 0 <= j < len ==> b[j] == a[j]; */

void ArrayCopy (int *a, int *b, int len) {

int i = tid;

/*@ loop invariant i == N * loop_count + tid;

loop invariant

\forall int j; 0 <= j < N * loop_count ==> b[j] == a[j]; */

while (i < len) {

b[i] = a[i];

i = i + N;

}}

Fig. 1. Running Example: ArrayCopy

2 Execution model of GPU programs

Compute Unified Device Architecture (CUDA) is a development environment
provided by NVIDIA [22] for GPGPU. It includes a programming language
CUDA C, which is an extension of C for GPGPU. A CUDA C program consists
of host code, which is executed on a CPU, and device code, which is executed on
a GPU. Host code is mostly the same as usual C code, except that it can invoke
a function defined in device code. Such a function is called a kernel function (or
simply kernel). The device code is also similar to usual C code, but it includes
several special constants and functions specific to GPU, such as thread identifiers
and synchronization primitives. The kernel function is executed on GPUs by the
specified number of threads in parallel. The number of threads is specified in
host code and does not change during the execution of a kernel function. When
all the threads finish the execution, the result becomes available to host code. In
this paper we focus on the verification of kernel functions invoked by host code
(so we do not consider kernel functions called from device code).

As is mentioned in Section 1, we assume each instruction is executed in
complete lockstep by all threads during the execution of device code. When
the control branches during the execution, both branches are executed sequen-
tially with threads irrelevant to branches being disabled. After both branches
are completed, all the threads are enabled again. We say a thread is inactive
if it is disabled, and active otherwise. This execution model is simplified from
the so-called SIMT execution model, an execution model of CUDA C [22], in
which threads form hierarchically organized groups and only threads that be-
long to the smallest group (called warp) are executed in lockstep. However, for
race-free programs, there are not significant differences (except barrier diver-
gence, which is an error caused by threads executing barrier synchronization at
different program points).

Let us consider the kernel given in Figure 1, which we call ArrayCopy, and
use it as a running example. This program copies the contents of a shared array
(pointed to by) a to another shared array (pointed to by) b, both of length len.

N is the number of threads, and tid is a thread identifier, which ranges from 0
to N − 1. The first three lines specify a precondition and a postcondition, and
the first two lines of the loop body declare loop invariants used for verification
of the specification. These specifications will be used later but we ignore them
for the moment because they are not used during the execution.

If len is 6 and N is 4, the execution takes place as follows.3 The local variable
i is initialized to tid, so its initial value equals t at thread t (0 ≤ t < 4). In
the first iteration of the loop body, the first four elements are copied from a to
b, and the value of i at thread t becomes t + 4. Then, the guard i < len is
satisfied by only threads 0 and 1; therefore, threads 2 and 3 become inactive and
the loop body is iterated again. Because active threads are only 0 and 1, the
fourth and fifth elements of a are copied, and the values of i at threads 0, 1, 2, 3
becomes 8, 9, 6, 7, respectively. Now, no threads satisfy the guard, so the loop is
exited and the program terminates with the expected result.

3 Verification Condition Generation

In this section we describe how VCs are generated from a program annotated
with specifications, using the example ArrayCopy in Figure 1. Before discussing
VC generation, let us take a look at the specification. The first line declares a
precondition that the length of arrays is a multiple of the number of threads.
A variable m, whose declaration is omitted, is a specification variable, which is
a variable used only in the specification. We also assume implicitly that a and
b do not overlap, and have length (at least) len. The second line declares the
postcondition asserting that the contents of a are indeed copied into b. The loop
contains two declarations of loop invariants. In the invariant we allow a specifi-
cation variable loop count, which stands for how many times the loop body has
been executed. This variable is not present in CUDA C, but we have introduced
it for convenience. It allows us to express the value of variables explicitly in an
invariant. The first invariant specifies the value of the variable i on each iter-
ation, and the second asserts that at the beginning of l-th iteration (counting
from 0) the first N · l elements of a have been already copied to b.

We present verification condition generation as symbolic execution of the
axiomatic semantics of SIMT programs by Kojima and Igarashi [10]. We do not
review the previous work here but believe that the description below is detailed
enough (and self-contained), with the concrete execution model described in the
last section in mind. Constructs that do not appear in this example are explained
at the end of the section.

First, generate specification variables i0 and len0, which represent the initial
values of i and len, respectively, and a0 and b0, which represent the contents
of arrays pointed to by a and b, respectively. Here, i0, a0, and b0 has the type
of maps from int to int, and len0 has type int. Since a0 and b0 represent

3 We choose these initial values to explain what happens when the control branches.
These initial values do not satisfy the precondition on the first line, so the asserted
invariant is not preserved during execution.

arrays, they are naturally represented as maps. The reason that i0 also has a
map type is that it corresponds to a local variable whose value varies among
threads. So, expression i0(t) stands for the value of i at thread t. We also need
m which is a specification variable of type int. The precondition in the first line
is translated into the formula len0 = m · N , so we assume this equation holds.
In the next line the value of i is updated to tid in all threads. In general every
time we encounter an assignment we introduce a new variable that represents
the value of the variable being assigned after this assignment. In the case of
i = tid we introduce a new variable i1 with the same type as i0, and assume
∀t.0 ≤ t < N → i1(t) = t, that is, its value on thread t equals t. For later use, let
us denote by Γentry the list consisting of the two constraints we have introduced
so far:

Γentry = len0 = m ·N, ∀t.0 ≤ t < N → i1(t) = t.

So, Γentry represents possible states of the program at the beginning of the loop.
Since two invariants are declared in this loop, we have to check that they are
true at the entry, so we generate two conditions to be verified:

Γentry ⊢ ∀t.0 ≤ t < N → i1(t) = N · 0 + t, (T1)

Γentry ⊢ ∀j.0 ≤ j < N · 0 → b0(j) = a0(j). (T2)

Below we call a condition of the form Γ ⊢ φ a task, and φ the goal. Tasks
(T1) and (T2) assert that the first and second invariants are true at the loop
entry, respectively. The right-hand sides of these tasks are obtained from loop
invariants by simply replacing loop count with 0, the initial value of the loop
counter.

Next, we have to encode the execution of the loop, but in general it is impos-
sible to know how many times the loop body is executed. Rather than iterating
the loop, we directly generate a constraint that abstracts the final state of the
loop, relying on the invariants supplied by the programmer [8]. Also we have to
verify that the supplied invariants are indeed preserved by iterating the loop.
To do this we first introduce a new variable for each program variable being
modified in the loop body. In the case of our example, variables being modified
are b and i, so we generate fresh b1 and i2. We also introduce l corresponding
to the loop counter. Let Γloop be the following list of formulas:

Γloop = Γentry, 0 ≤ l,∀t.0 ≤ t < N → i2(t) = N · l + t,

∀j.0 ≤ j < N · l → b1(j) = a0(j).

Γloop consists of three additional constraints. The first one, 0 ≤ l, says that the
loop counter is not negative. The second and third ones correspond to invariants,
and they assert that invariants are true for variables b1, i2, and l we just have
introduced. Note that in Γloop it is not yet specified whether the loop is already
exited or not.

Consider the case the loop is continued. Then, there is at least one thread that
satisfies the loop guard i < len, which is expressed: ∃t.0 ≤ t < N ∧i2(t) < len0.
Since the loop body contains assignments to b and i, we generate new variables

b2 and i3 and add constraints expressing that these variables are the result
of executing these assignments. Writing down such constraints is a little more
involved than before, because these assignments are inside the loop body, and
therefore there may be several threads that are inactive (actually in this example
such a situation never happens, but to describe how VCs are generated in a
general case, let us proceed as if we do not know this fact). We use the notation
assign(b2, i2 < len0, b1, i2, a0(i2)) for such a constraint.4 This intuitively means
that b2 is the result of executing b[i] = a[i] with the values of b and i being
b1 and i2 respectively, and active threads t being precisely those that satisfy
i2(t) < len0. The first argument is the new value of the variable being assigned,
the second specifies which threads are active, the third is the original value of
the variable being assigned, the fourth is the index being written (in general,
this is an n-tuple if the array being assigned is n-dimensional, and the 0-tuple ·
if the variable is scalar), and the last is the value of the right-hand side of the
assignment. It can be written out as

∀n. (∃t.0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = n ∧ b2(n) = a0(i2(t))) ∨
((∀t.¬(0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = n)) ∧ b2(n) = b1(n)) ,

(1)

but the concrete definition does not matter here. For general cases, readers are
referred to Kojima and Igarashi [10]. Putting these constraints together we ob-
tain Γiter defined as follows:

Γiter = Γloop, ∃t.0 ≤ t < N ∧ i2(t) < len0,

assign(b2, i2 < len0, b1, i2, a0(i2)), assign(i3, i2 < len0, i2, ·, i2 +N).

Using Γiter we can write the tasks corresponding to the invariant preservation
as follows:

Γiter ⊢ ∀t.0 ≤ t < N → i3(t) = N · (l + 1) + t, (T3)

Γiter ⊢ ∀j.0 ≤ j < N · (l + 1) → b2(j) = a0(j). (T4)

The right-hand sides of these tasks are obtained by replacing loop count, b, and
i in the invariants with their values after the iteration, namely l+1, b2, and i3,
respectively.

Finally we consider the case loop is exited, in which case the loop guard is
false in all threads. Therefore we put

Γexit = Γloop,∀t.0 ≤ t < N → ¬(i2(t) < len0).

Since there are no more statements to be executed, it only remains to verify that
the postcondition holds under this constraint. So the final task is as follows:

Γexit ⊢ ∀j.0 ≤ j < len0 → b1(j) = a0(j). (T5)

4 Some of the terms appearing in this expression are not well-typed. We could write
assign(b2, (λt.i2(t) < len0), b1, (λt.i2(t)), (λt.a0(i2(t)))), but for brevity we abbrevi-
ate it as above.

To summarize, we generate tasks (T1–T5) as VCs for our example program.
(T1) and (T2) ensure that the invariants hold when the loop is entered, (T3) and
(T4) ensure that the invariants are preserved by executing the loop body, and
(T5) ensures that the postcondition is satisfied when the program terminates.

Finally let us mention two more constructs: if-statements and barrier syn-
chronization. As mentioned before, an if-statement is executed sequentially with
switching active threads. When a statement if b thenP elseQ is encountered,
we first process P , and then Q (because we assume race-freedom, the order does
not matter). When processing P we have to bear in mind that active threads
are restricted to those at which b evaluates to true, and similarly for Q. Barrier
synchronization is, since we assume the execution is complete lockstep, consid-
ered as an assertion that all threads are active at that program point. We can
generate an extra task Γ ⊢ ∀t.0 ≤ t < N → µ(t), where µ(t) is a formula ex-
pressing that thread t is currently active, to verify that the synchronization does
not fail. For example, if there were synchronization at the end of the loop body
in ArrayCopy, µ(t) would be i2(t) < len0.

4 Simplifying Verification Conditions

Unfortunately, SMT solvers often fail to discharge VCs generated by the algo-
rithm described in the previous section. In this section, we describe a few schemes
to simplify VCs used in our verifier implementation.

The main difficulty stems from universal quantifiers, which are typically in-
troduced by assignment statements and loop invariants. When these universally
quantified formulas are put on the left-hand side of the tasks, the solvers have
to instantiate them with appropriate terms, but it is often difficult to find them.
To overcome this difficulty, in Sections 4.1 and 4.2 we introduce two strategies
that find appropriate instances of these quantified variables.

Another difficulty stems from multiplication over integers that often arises
from indices of arrays. This makes VCs harder to discharge automatically, since
nonlinear integer arithmetic is undecidable (even without quantifiers). The trans-
formation described in Section 4.3 simplifies formulas involving both quantifiers
and multiplication in a certain form.

A standard approach to the first problem would be to provide triggers (quan-
tifier patterns) to SMT solvers, but as far as we have tried, this does not seem
sufficient. This is because the transformation described in Section 4.3 is often
effective only after the other two are applied.

4.1 Eliminating assign

One of the important transformations is what we call assign-elimination. Dur-
ing VC generation, we introduce a new assumption involving assign for each
assignment statement. As we have seen in (1), assign is universally quantified
and therefore has to be instantiated by appropriate terms. The main objective
of assign-elimination is to find all necessary instances automatically, and rewrite

the VC using such instances (as a result, assign may be removed from the task).
Since (1) is introduced to specify the value of b2, we instantiate (1) by every
term u such that b2(u) appears in VCs. By enumerating such u’s (including
those inside quantifiers) we would find all instances for n that are necessary to
prove VCs.

There are two cases to consider: assignments to local variables and shared
variables. As an example of the local case, let us consider i3 appearing in (T3).
Its value is specified by assign(i3, i2 < len0, i2, ·, i2 +N) in Γiter, which implies:
(a) if t is a thread ID that is active (that is, i2(t) < len0), then the value of
i3 at t is i2(t) + N , and (b) otherwise the value of i3 at t is i2(t). In case (a),
i3(t) = N · (l+ 1) + t is equivalent to i2(t) +N = N · (l+ 1) + t, and in case (b)
it is equivalent to i2(t) = N · (l + 1) + t. Therefore by doing case splitting, we
can rewrite the right-hand side of (T3) into:

∀t.(0 ≤ t < N → i2(t) < len0 → i2(t) +N = N · (l + 1) + t) ∧
(0 ≤ t < N → ¬(i2(t) < len0) → i2(t) = N · (l + 1) + t).

The first and the second conjuncts correspond to cases (a) and (b), respectively.
For the case of shared variables, consider b2 in task (T4). Similarly to the

previous case, for each j either (a) there exists a thread t such that i2(t) < len0,
i2(t) = j, and b2(j) = a0(i2(t)), or (b) there is no such thread t, and b2(j) =
b1(j). We obtain the following formula by rewriting the right-hand side of (T4):

∀j.(0 ≤ j < N · (l + 1) →
∀t.0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = j → a0(i2(t)) = a0(j)) ∧

(0 ≤ j < N · (l + 1) →
(∀t.¬(0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = j)) → b1(j) = a0(j)).

(2)

Following this strategy we can rewrite the VC so that the first argument of
assign does not appear in the resulting VC, thus SMT solvers do not have to
search for instances of assign any more.

4.2 Rewriting Using Equalities with Premises

Invariants often involve a quantified and guarded equality that specifies the
values of program variables, as we can see in ArrayCopy. Let us illustrate how
such an equality can be used to rewrite and then simplify the formula. The
method described below applies to both goals and assumptions.

Consider b1 in the task (T5). Using the invariant ∀j.0 ≤ j < N · l → b1(j) =
a0(j), we can rewrite b1(j) into a0(j), but only under the assumption that 0 ≤
j < N · l. Taking this condition into account, we can see that the goal ∀j.0 ≤
j < len0 → b1(j) = a0(j) can be changed to:

∀j.0 ≤ j < len0 → (0 ≤ j < N · l ∧ a0(j) = a0(j)) ∨
(¬(0 ≤ j < N · l) ∧ b1(j) = a0(j)).

(3)

After this transformation, we can use several simplifications to transform the
task into an easier one that can be solved automatically. Let us demonstrate
how this can be done. We have both ∀t.0 ≤ t < N → ¬(i2(t) < len0) and
∀t.0 ≤ t < N → i2(t) = N · l + t in Γexit, therefore rewriting i2(t) in the same
way as above, we can see that it follows from Γexit that

∀t.0 ≤ t < N → ¬
(
(0 ≤ t < N → N · l + t < len0) ∧
(¬(0 ≤ t < N) → i2(t) < len0)

)
.

By using laws of propositional logic we can simplify this as ∀t.0 ≤ t < N →
¬(N · l + t < len0), and by eliminating the quantifier we obtain len0 ≤ N · l.
From this, (3) is easily derived by SMT solvers.

Similarly, (2) can be simplified as follows: the first conjunct is easily proved;
in the second conjunct we can replace i2(t) with N · l+ t, and then eliminate ∀t
to obtain

∀j.0 ≤ j < N · (l + 1) → ¬(0 ≤ j −N · l < N ∧ j < len0) → b1(j) = a0(j).

In general, we first search for an assumption of the form

∀x1.γ1 → ∀x2.γ2 → . . .→ ∀xm.γm → f(s1, . . . , sn) = s′ (4)

where f is a function symbol. For each such assumption, find another formula
(either one of the assumptions or the goal) in which f occurs. Such a formula can
be written as ψ[φ(f(t1, . . . , tn))], where every variable occurrence of t1, . . . , tn is
free in φ(f(t1, . . . , tn)). Then by rewriting f we obtain:

ψ[(∃x1 . . . xm.γ1 ∧ · · · ∧ γm ∧ s1 = t1 ∧ · · · ∧ sn = tn ∧ φ(s′)) ∨
(∀x1 . . . xm.¬ (γ1 ∧ · · · ∧ γm ∧ s1 = t1 ∧ · · · ∧ sn = tn)) ∧ φ(f(t1, . . . , tn))].

Intuitively, this can be read as follows. If there are x1, . . . , xn that satisfy γ1, . . . , γn
and si = ti for every i, then by (4) we can replace φ(f(t1, . . . , tn)) with φ(s′)
(the first disjunct). If there are no such x1, . . . , xn, then we leave φ(f(t1, . . . , tn))
unchanged (the second disjunct).

4.3 Merging Quantifiers

Aside from standard transformations on formulas such as quantifier elimination,
we exploit a procedure which merges two quantifiers into a single one. Typical
example is the following: if x and y range over integers, ∀x.0 ≤ x < a→ ∀y.0 ≤
y < b → φ(x + ay) (or equivalently, ∀x.0 ≤ x ≤ a − 1 → ∀y.0 ≤ y ≤ b − 1 →
φ(x+ay)) is equivalent to 0 < a→ ∀z.0 ≤ z < ab→ φ(z) (the antecedent 0 < a
is necessary because otherwise if both a and b are negative the former is trivially
true while the latter would not). This pattern often arises when computing an
index of an array.

Let us illustrate how this helps simplify a VC. This transformation typically
applies when a thread hierarchy and/or two-dimensional arrays are involved.
Consider the following program, which is a variant of ArrayCopy.

/*@ requires len == m * N;

ensures \forall int j; 0 <= j < len ==> b[j] == a[j]; */

i = bid * bsize + tid;

/*@ loop invariant i == N * loop_count + bid * bsize + tid;

loop invariant

\forall int j; 0 <= j < N * loop_count ==> b[j] == a[j]; */

while (i < len) {

b[i] = a[i];

i = i + N;

}

Here we assume that threads are grouped into blocks, as in actual CUDA C or
OpenCL programs. Each block consists of an equal number of threads. In the
program above, bsize is the number of threads contained in one block, and bid

is the identifier for a block, called block ID. When bid is evaluated on a certain
thread, the result is the block ID of the block to which the thread belongs. N is,
as before, the number of threads, and now equals the product of bsize and the
number of blocks.

Let us consider the termination condition of the loop:

∀t.0 ≤ t < T → ∀b.0 ≤ b < B → ¬(N · l + b · T + t < len)

where T denotes the number of threads per block, and B the number of blocks
(we replaced i with N · l + b · T + t using the first invariant). By merging two
quantifiers, we obtain

0 < T → ∀z.0 ≤ z < T ·B → ¬(N · l + z < len).

The quantification over z is now easily eliminated, and we obtain 0 < T →
T ·B ≤ 0 ∨ len ≤ N · l.

Up to now we have assumed that the quantifiers that can be merged have the
form ∀x.0 ≤ x < a→ . . . , but in general this is not the case. Other simplification
procedures (quantifier elimination, in our implementation) may convert formulas
to their normal forms. After that, the guard 0 ≤ x < a may be modified,
split, or moved to other places. This significantly makes the quantifier merging
algorithm complicated. Because guards do not necessarily follow quantifiers, it is
not straightforward to find a pair of quantifiers that can be merged as described
above.

Our strategy in the general case is the following. (I) For every quantified
subformula ∀x.φ(x), find a such that ∀x.φ(x) is equivalent to ∀x.0 ≤ x < a →
φ(x). We call such a a bound of x. (II) For each subformula ∀x.∀y.φ(x, y), where x
and y have bounds a and b, respectively, find ψ(z) such that φ(x, y) is equivalent
to ψ(x+ay) (or ψ(y+bx)). Then we can replace ∀x.∀y.φ(x, y) with an equivalent
formula 0 < a→ ∀z.0 ≤ z < ab→ ψ(z), as desired. For the existential case, use
∧ instead of →. There may be multiple (actually infinitely many) bounds, and
only some of them can be used as a in step (II). We collect as many bounds as
possible in step (I), and try step (II) for every bound a of x we found. Below we
simply write φ rather than φ(x) if no confusion arises.

For step (I), note that if ¬(0 ≤ x) implies φ and ¬(x < a) implies φ, then
∀x.φ if and only if ∀x.0 ≤ x < a → φ. Similarly, if φ implies both 0 ≤ x and
x < a, then ∃x.φ if and only if ∃x.0 ≤ x < a ∧ φ. Therefore we can split the
problem as follows: for the universal case, (i) check that ¬(0 ≤ x) implies φ, and
(ii) find a such that ¬(x < a) implies φ; for the existential case, (i) check that φ
implies 0 ≤ x, and (ii) find a such that φ implies x < a. Because both of them
can be solved similarly, we shall focus on (ii).

Let us say that a is a ∀-bound (∃-bound) of x in φ if ¬(x < a) implies φ (φ
implies x < a, respectively). Then we are to find ∀- and ∃-bounds of x in a given
φ. The procedure is given recursively. If φ is atomic, then the problem is easy,
although there are tedious case distinctions. For example, ∀-bound of x ≥ t is
t,5 ∀-bound of x < t does not exist, and ∃-bound of x ≤ t is t+1. If φ is atomic
but not an inequality, then we consider there are no bounds. If φ is φ1 ∧ φ2,
then ∀-bounds of φ is the intersection of those of φ1 and φ2 (this may miss some
bounds, but we confine ourselves to this approximation), and ∃-bounds are the
union of those of φ1 and φ2. The ∀- and ∃-bounds of ¬φ are ∃- and ∀-bounds of
φ, respectively. Bounds of ∀y.φ are those of φ. We omit ∨, →, and ∃ since they
are derived from other connectives by the laws of classical logic.

Step (II) is done by verifying that all atomic formulas depends only on x+ay.
First, consider s(x, y) < t(x, y) where s and t are polynomials in x, y. There is a
simple sufficient condition: if there exists a polynomial u(z) such that t(x, y) −
s(x, y) = u(x+ay), then s(x, y) < t(x, y) is equivalent to 0 < u(x+ay). Therefore
it is sufficient to check that s(x, y) − t(x, y) can be written as a polynomial of
x+ay, which is not difficult. If s and t are not polynomials, or a predicate other
than inequalities is used, then we check whether all arguments of the predicate
or function symbols can be written as u(x+ ay).

4.4 Extra Heuristics

It is sometimes the case that the simplified goal is not still provable by SMT
solvers, but the following transformations help proving the task (they are sound
but not complete, i.e. they may replace a provable goal with an unprovable one).

– If an equality f(s1, . . . , sn) = f(t1, . . . , tn) occurs in a positive position, then
we may replace it with s1 = t1 ∧ · · · ∧ sn = tn.

– A subformula occurring in a positive (negative) position of a task may be
replaced by False (True, respectively). We try this for a subformula of the
form f(t1, . . . , tn) = t where f corresponds to a program variable.

By applying they to a subformula inside a quantifier, we can rewrite a nonlinear
formula into a linear one. After that we can use quantifier elimination to simplify
the resulting formula.

5 In this case t+1, t+2, . . . are also ∀-bounds, but we do not take them into account.
Practically, considering only t seems sufficient in many cases.

5 Implementation and Experiment

We have implemented the method described above and conducted an experiment
on three kernels. Our implementation takes source code annotated with speci-
fications (pre- and post-conditions and loop invariants) as an input and checks
whether the specification is satisfied. The input language is a subset of CUDA
C, but we slightly modified the syntax so that we can use an existing C parser
without modification. This is just to simplify the implementation.

The verifier first generates VCs as described in Section 3, and performs the
simplification in Section 4 roughly in the following order: (1) assign-elimination
(Section 4.1); (2) rewriting (Section 4.2); (3) merge quantifiers (Section 4.3). In
addition to these operations, we also use standard simplification methods such
as quantifier elimination. After that, for each task, it calls several SMT solvers
at once, and run them in parallel. The task is considered completed when one of
the solvers successfully proves it. For tasks that none of the solvers can prove,
it applies heuristics in Section 4.4 followed by calls to SMT solvers and repeats
these steps at most 10 times. If there is still a task that remains unsolved, the
verification fails.

The front-end is written in OCaml. We use Cil [20] to parse the input, and
the syntax tree is converted into tasks using Why3 [3] API. Simplification of
formulas is implemented as a transformation on data structures of Why3, and
SMT solvers are called through Why3 API functions.6 We use Alt-Ergo, CVC3,
CVC4, E Theorem Prover, and Z3 as back-ends.7

Using our implementation we have verified the functional correctness of three
programs: vector addition, matrix multiplication, and stencil computation (dif-
fusion equation in one dimension) programs. The matrix multiplication program
is taken from NVIDIA CUDA Samples [22] and slightly modified without chang-
ing the essential part of the algorithm. The vector addition program computes
the sum of two vectors in a similar way to ArrayCopy. The matrix multiplication
and diffusion programs are optimized by using shared memory.

We did not concretize any of the parameters in programs, such as the number
of threads and blocks, length of vectors, and size of matrices. Throughout the
experiments, we set time limit to 1 second through Why3 API for each solver
call (but CVC4 seems to run for two seconds; we do not know the reason). We
also set memory limit to 4000MB, but it seems that it is almost impossible to
exhaust this amount of memory in 1 second. Experiments are conducted on a
machine with two Intel Xeon processors E5-2670 (with eight cores, 2.6 GHz)
and 128GB of main memory. The OCaml modules are compiled with ocamlopt

version 4.02.3.

The result is summarized in Table 1. We compared the performance of our
method with and without the simplification introduced in Section 4 (shown in the

6 Currently we use Why3 only for manipulating formulas and calling SMT solvers,
although it provides a programming language WhyML.

7 alt-ergo.lri.fr, www.cs.nyu.edu/acsys/cvc3, cvc4.cs.nyu.edu, www.eprover.
org, z3.codeplex.com.

Table 1. The number of proved/generated tasks, time spent for VC generation and
SMT solving (sec), and size of VC, with and without VC simplification. LOC excludes
blank lines and annotations.

program simplify result VC generation SMT solving size of VC

vectorAdd Y 7/7 0.1488 0.8154 9836
(9 LOC) N 3/7 0.0064 8.9177 9879

matrixMul Y 19/19 1.4101 10.4927 34754
(29 LOC) N 15/17 0.0271 5.3835 38416

diffusion Y 112/112 9264.9941 17.7110 163819
(20 LOC) N 1/4 0.0063 3.7122 6511

second column). For the case where no simplification is applied, we have provided
triggers that would help solvers finding an instance used in assign-elimination
and rewriting (such as b2(n) in (1) and i2(t) in ∀t.0 ≤ t < N → i2(t) = N · l+ t).
The size of a VC is the sum of the size of all formulas in it and the size of a
formula is the number of nodes in its abstract syntax tree. The number of tasks
increases when simplification is enabled, because simplification may split a task
into smaller tasks.

Our implementation with the simplification successfully verified realistic GPU
kernels, whereas it could not verify any of the three programs without simplifica-
tion. We also ran SMT solvers for one hour on each task without simplification,
and confirmed that the numbers of proved tasks did not change in any of the
three cases. These results show that our simplification strategy is indeed effective.
We also tried applying only some of the simplifications introduced in Section 4;
solvers could discharge one more task for vectorAdd under some combinations of
simplification, but verification failed unless all of the simplifications are applied.

The result also suggests a limitation of our current implementation. As we can
see from the VC-generation time and size for diffusion with the simplification,
our method occasionally generates very large VCs, which are time- and memory-
consuming to generate. This is mainly caused by iterated applications of the
assign-elimination which, in the worst case, doubles the size of the formula every
time. We expect that the generation time can be reduced by further optimization,
because during assign-elimination many redundant formulas are generated, and
removed afterwards (indeed, in the case of diffusion, the intermediate VC has
size approximately 1.1× 107, which is nearly 70 times larger than the final VC).

6 Related Work

Functional correctness of GPU programs. Some of the existing tools support
functional correctness verification by assertion checking or equivalence checking.
PUG [14] and GKLEE [16] support assertion checking (as well as detecting other
defects such as data races), but they cannot verify fully parameterized programs.
Both of them require the user to specify the number of threads, and they du-
plicate each instruction by the specified number of threads to simulate lockstep

behavior as a sequential program. PUGpara [15] supports equivalence checking
of two parameterized programs. They report results on equivalence checking
of unoptimized and optimized kernels; equivalence checking of a parameterized
matrix-transpose program resulted in timeout, so they had to concretize some
of the variables.

Deductive approaches to functional correctness. Regarding deductive verification
of GPU programs, two approaches have been proposed. Kojima and Igarashi
adapted the standard Hoare Logic to GPU programs [10]. Our work is based on
theirs, although we do not use their inference rules as they are. Blom, Huisman
and Mihelčić applied permission-based separation logic to GPU programs [2].
Their logic is implemented in the VerCors tool set.8 Their approach, in addition
to functional correctness, can reason about race-freedom by making use of the
notion of permission (but it requires more annotations than ours).

Automated race checking. Race checking is one of the subject intensively studied
in verification of GPU programs, and many tools have been developed so far [14,
6, 15, 17, 18, 1]. Although they use SMT solvers, their encoding methods for race-
checking are different from ours in several ways. In particular, it is not necessary
to consider all threads at a time, but only two threads suffice. This is because
if there is a race, then there has to be a pair of threads that are to perform
conflicting read/write (this is an important observation for optimization which,
to our knowledge, first mentioned in [14] and detailed discussion on this technique
is given in [1]). Therefore they model the behavior of a pair of threads (whose
thread identifiers are parameterized), rather than all threads.

Reasoning about arrays. There is a technique to eliminate existential quantifi-
cation over arrays, which is applied to the verification of C program involving
arrays [11]. Although we did not consider quantifier elimination over arrays ex-
plicitly, the effect of assign-elimination is similar to the quantifier elimination:
if a variable a representing an intermediate value of some array and a does not
appear in the postcondition, then we can regard a as an existentially quantified
variable. Because assign-elimination removes a from the VC, it could be seen as
a quantifier-elimination procedure. Further investigation on relationship to their
idea and possibility of adapting it to our setting is left for future work.

7 Conclusion

We have presented an automated verification method of race-free GPGPU pro-
grams. Our method is based on symbolic execution and (manual) loop abstrac-
tion. In addition to the VC generation method, we proposed several simplification
methods that can help SMT solvers prove generated VCs. We have empirically
confirmed that our method successfully verifies several realistic kernels without

8 Several examples are found at https://fmt.ewi.utwente.nl/redmine/projects/

vercors-verifier/wiki/Examples.

concretizing parameters and that the simplification method is effective for im-
proving efficiency of the verification procedure. We expect that it is a feasible
approach to the verification of functional correctness to check race-freedom by
using the existing tools first, and then verifying functional correctness by using
our method.

Automatically inferring loop invariants is one of the interesting and impor-
tant problems left for future work. Various methods to generate invariants have
been proposed in the literature [19, 12, 9, 5]. Although they mainly target se-
quential programs, we expect that they can be adapted to GPU programs. To
our knowledge, there is no previous work on applying these invariant genera-
tion methods to GPU programs (GPUVerify [1] uses Houdini algorithm [7] to
find invariants, and PUG [14] uses predefined set of syntactic rules that can
automatically derive an invariant if the program fragment matches a common
pattern).

Other important future work is to improve our manipulation of formulas
of nonlinear arithmetic, from which a difficulty often arises. Sometimes SMT
solvers cannot solve a problem that seems quite easy for humans. For example,
if a, x, x′, y, y′ are integers, 0 ≤ x < a ∧ 0 ≤ x′ < a ∧ x + ay = x′ + ay′ implies
x = x′. Similar inferences are often needed to reason about GPU programs
because it arises from the computation of an index of arrays. As far as we have
tried, this type of inference is hard to automate. We conjecture that nonlinear
expressions (such as x + ay above) that appear during verification have some
patterns in common, and we can find a suitable strategy to handle them, enabling
us to automatically prove the correctness of more complicated programs. One of
the possible direction would be to investigate the relationship to decidable non-
linear extensions of linear arithmetic [4, 13]. Although we do not expect that all
the VCs are expressed in such theories, it would be interesting if these theories
and their decision procedures bring us a new insight into the manipulation of
non-linear VCs.

Improving the strategy of simplification on VCs is also vital for scalability
of our verification method. As we have discussed in Section 5, our simplification
method sometimes produces extremely large VCs, or even fails to generate VCs
in a reasonable time. Also, there seems to be room for optimization in the assign-
elimination procedure. We expect that optimizing this part greatly reduces the
amount of time spent for verification, because assign-elimination is one of the
most time-consuming part of our verification method.

References

1. Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P., Wick-
erson, J.: The design and implementation of a verification technique for GPU ker-
nels. ACM Trans. Program. Lang. Syst. 37(3), 10:1–10:49 (May 2015)

2. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU
programs. Science of Computer Programming 95(3), 376–388 (12 2014)

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd
of Provers. In: Boogie 2011: 1st Intl. Workshop on Intermediate Verification Lan-
guages. pp. 53–64. Wroclaw, Poland (2011)

4. Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divis-
ibility. In: Sassone, V. (ed.) Proc. of FOSSACS 2005. Springer LNCS, vol. 3441,
pp. 425–439. Springer (2005), http://dx.doi.org/10.1007/b106850

5. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invari-
ants for imperative programs: A farewell to Gröbner bases. Science of Computer
Programs 93, 89–109 (2014)

6. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic testing of OpenCL code. In:
Proc. of Hardware and Software: Verification and Testing. Springer LNCS, vol.
7261, pp. 203–218 (2012)

7. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java.
In: Proc. of International Symposium of Formal Methods Europe (FME 2001).
Springer LNCS, vol. 2021, pp. 500–517 (2001)

8. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact
verification conditions. In: Proc. of ACM POPL. pp. 193–205 (2001)

9. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for
learning invariants. In: Proc. of 26th International Conference on Computer Aided
Verification (CAV 2014). Springer LNCS, vol. 8559, pp. 69–87 (2014)

10. Kojima, K., Igarashi, A.: A Hoare Logic for SIMT programs. In: Proc. of Asian
Symposium on Programming Languages and Systems (APLAS 2013). Springer
LNCS, vol. 8301, pp. 58–73 (2013)

11. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using Horn clauses over integers and arrays. In:
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015. pp. 89–96 (2015)

12. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Fundamental Approaches to Software Engineering, Springer
LNCS, vol. 5503, pp. 470–485 (2009)

13. Lechner, A., Ouaknine, J., Worrell, J.: On the complexity of linear arithmetic with
divisibility. In: Proc. of 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, (LICS 2015). pp. 667–676 (2015)

14. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proc. of the 18th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE’10). pp. 187–196. ACM (2010)

15. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs.
In: IPDPS Workshop on Multicore and GPU Programming Models, Languages
and Compilers Wokshop. pp. 2450–2459. IEEE (May 2012)

16. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proc. of ACM PPoPP. pp.
215–224 (2012)

17. Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equiva-
lencing for symbolic analysis of races in CUDA programs. In: Proc. of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis (SC’12). IEEE Computer Society Press (2012)

18. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU pro-
grams. In: Proc. of Intl. Conf. for High Performance Computing, Networking, Stor-
age and Analysis (SC 2014). pp. 179–190 (2014)

19. McMillan, K.: Quantified invariant generation using an interpolating saturation
prover. In: Tools and Algorithms for the Construction and Analysis of Systems,
Springer LNCS, vol. 4963, pp. 413–427 (2008)

20. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Proc. of 11th Intl.
Conf. on Compiler Construction (CC 2002). Springer LNCS, vol. 2304, pp. 213–228
(2002)

21. Nguyen, H.: GPU Gems 3. Addison-Wesley Professional, first edn. (2007), http:
//developer.nvidia.com/object/gpu-gems-3.html

22. NVIDIA: NVIDIA CUDA C Programming Guide (2014), http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html

