Kobe Colloquium on Logic, Statistics and Informatics

以下の要領でコロクウィウムを開催します。

日時:2010年12月16日(木)15:10 〜
場所:神戸大学自然科学総合研究棟3号館4階421室(渕野グループプレゼンテーション室)
講演者:Dmitri Shakhmatov(愛媛大学)
題目:A Kronecker-Weyl theorem for subsets of abelian groups

アブストラクト:
Let N be the set of non-negative integer numbers, T the circle group and c the cardinality of the continuum. 
Given an abelian group G of size at most 2^c and a countable family F of infinite subsets of G, 
we construct ``Baire many'' monomorphisms pi: G to T ^c such that pi(E) is dense in { y in T^c : ny=0 } 
whenever n in N , E in F, nE = {0} and { x in E : mx=g } is finite for all g in G and m such that 
n = mk for some k in  N \ {1} . We apply this result to obtain an algebraic description of countable 
potentially dense subsets of abelian groups, thereby making a significant progress towards a 
solution of a problem of Markov going back to 1944. A particular case of our result yields a 
positive answer to a problem of Tkachenko and Yaschenko (2002). Applications to group actions and 
discrete flows on T^cont, diophantine approximation, Bohr topologies and Bohr compactifications
are also provided.

交通:阪急六甲駅またはJR六甲道駅から神戸市バス36系統「鶴甲団地」
行きに乗車,「神大本部工学部前」停留所下車,徒歩すぐ.
http://www.kobe-u.ac.jp/info/access/rokko/rokkodai-dai2.htm

連絡先:ブレンドレ ヨーグ  brendle@kurt.scitec.kobe-u.ac.jp