重複して受け取られたかたはご容赦ください。
下記のとおりに哲学的論理学に関するサマースクールを開催いたします。
どうぞふるってご参加ください。
矢田部俊介
***************
記
日時:2014年8月30日(土)~31日(日) 場所:京都大学文学部第7講義室 (下地図のNo.8) http://www.kyoto-u.ac.jp/en/access/campus/main.htm
開催趣旨と内容: 近 年、哲学や人文学と論理学や形式的言語学、情報科学との間の垣根は低くなり、哲学や人文学の研究にも形式的な論理学等の手法の知識が必要となるケースも増えてきた。欧州や北米では、人文学・哲学の研究者とこれら三分野の研究者が国を超えて共に集い、それら手法を学び、意見交換を通じて共同研究の芽を用意するサマースクール(ESSLI、NASSLLI等)が毎年行われ、多くの成果を上げている。 しかし、アジア太平洋地域では、研究者は自身の専門分野に籠もり、欧米のような共同の試みはあまり行われてこなかった。本サマースクールは、アジア太平洋地域の、論理学が専門ではない哲学の大学院生が多数参加する国際会議CCPEAのサテライトとして開催され、院生への最先端の論理学的手法等の紹介を通して、異分野同志の協業をスタートさせることを目指す。 今回は、8月30日にブリストル大学のLeon Horsten教授に、公理的真理理論の論理学的、および哲学的意義(特に真理に関するデフレ主義との関連で)についてご講演頂く。 8月31日は、矢田部・秋吉が非古典論理上の素朴集合論や形式算術の順序数解析などの話題について、入門的な説明と最新の結果説明を同時に行う。 また、夕方は、お茶の水女子大学の田中と叢が、言語学における論理学的・計算機科学的手法の最新の応用例について、発展的な解説を行う。
参加費は無料、事前登録は不要です。講演は英語で行われます。
問い合わせ先:[email protected]
***************************************** The Kyoto Summer School in Logic, Language and Information (KSSLLI)
The Kyoto Summer School in Logic, Language and Information (KSSLLI) is planned to be an annual event under the support of the Center for Applied Philosophy and Ethics, graduate school of letters, Kyoto University (CAPE) and brings together logicians, linguists, computer scientists, and philosophers to study language, logic, and information, and their interconnections. This is a satellite workshop of the 2nd conference on Contemporary Philosophy in East Asia (CCPEA). There will be about several courses at introductory and advanced invited lectures and a student session to foster interdisciplinary discussion among philosophers, logicians and computer scientists.
Venue: The 7th lecture room, faculty of letters main building (the bulding no.8 of the map below), Kyoto University http://www.kyoto-u.ac.jp/en/access/campus/main.htm
Conference url: http://www.cape.bun.kyoto-u.ac.jp/capes/ws/
Fee: free Submission: no submission is needed.
Schedule: 30, August(Saturday) Mini lecture course on Axiomatic Truth Theories : Leon Horsten (University of Bristol) This is one day tutorial course on axiomatic truth theory (as FS) and deflationism for wide range audience. 10:00-12:00 Session 1 "Axiomatic approaches to truth" 12:00-14:00 Lunch 14:00-16:00 Session 2 "Implications for deflationism about truth"
31, August(Sunday) Short lectures and introductions of advanced results This session provides introductions to new results in philosophical logics 10:00-11:30 Session 1 Naive set theories on non-classical logics: Shunsuke Yatabe (Kyoto University) 11:30-13:30 Lunch 13:30-15:00 Session 2 An Introduction to Proof Theory of First-Order Arithmetic: Ryota Akiyoshi (JSPS)
Talks on formal linguistics This session provides introductions to new results in formal linguistics 15:00-16:00 "A Proof-Theoretic Approach to Generalized Quantifiers in Dependent Type Semantics" Ribeka Tanaka (Ochanomizu University) 16:00-17:00 "Analysis and Implementation of Focus and Inverse Scope by Delimited Continuations" Youyou Cong (Ochanomizu University)
Abstracts: Session 1 Naive set theories on non-classical logics: Shunsuke Yatabe (Kyoto University) It is well-known that naive set theories within many non-classical logics do not imply a contradiction. And, in these set theories, there are very different from classical set theories with respect to the concept of infinity because these theories are highly circular. In this lecture, we introduce these set theories and such difference.
Session 2 An Introduction to Proof Theory of First-Order Arithmetic: Ryota Akiyoshi (JSPS) Gentzen proved the consistency of Peano arithmetic on 1936 after Goedel’s incompleteness theorems. Moreover, he showed that the epsilon_0 is the least ordinal for proving it. His fundamental work was the beginning of the modern proof theory called “ordinal analyais”. In 1951, Schuette used an infinitary inference called “the omega-rule” for obtaining a more perspicuous proof of Gentzen’s result. This approach is not only technically simpler and elegant, but historically (or philosophically) interesting for the following reason; Brouwer already suggested the possibility of using of infinitary inference for Hilbertian proof theory. In this talk, we explain the basic results of infinitary proof theory via the omega-rule for Peano arithmetic. Additionally, we discuss the relationship between finitary proof theory (Gentzen) and infinitary proof theory (Schuette).
Talks on formal linguistics (1) A Proof-Theoretic Approach to Generalized Quantifiers in Dependent Type Semantics: Ribeka Tanaka (Ochanomizu University) The main aim of this study is to give semantic representations of generalized quanti fiers (GQs) in the framework of dependent type semantics (DTS), a proof-theoretic semantics for natural language. Quantifier "most" is known as a crucial example of GQs. In this talk, we introduce the framework of DTS, propose a definition of "most" that accounts for dynamic linguistic phenomena, and extend the definition to numerical quantifiers. We also show that the definitions satisfy logical properties of GQs, conservativity and monotonicity.
(2) Analysis and Implementation of Focus and Inverse Scope by Delimited Continuations: Youyou Sou (Ochanomizu University) Focus and inverse scope are known as phenomena that require the context surrounding a particular lexical item for the semantic representation of the whole sentence. The context of a given lexical item in a natural language sentence can be regarded as its continuation. Continuation is a notion in programming languages that represents the rest of the computation. In this talk, we will present an analysis of focus and inverse scope by means of the control operators shift/reset (Danvy and Filinski 1990). We also discuss the interaction between these phenomena.
For more information, please contact at [email protected]