皆様、産総研の山形と申します。Swansea大学のArnold Beckmann教授の講演会を下記の通り開催いたします。Beckmann教授は限定算術、証明複雑度およびそれらと計算複雑度との関係などを研究されています。
入構に事前登録が必要なため、参加ご希望の方は12月12日正午までに山形まで、お名前と所属をお知らせください。参加ご希望の方は必ず事前に連絡していただくようお願いします。
講演日時:12月13日14:00-15:00 場所:産総研関西センター C-3棟1階, 第10会議室 https://goo.gl/maps/ZJzcgE1agWLxypsk7
*************************
Arnold Beckmann: Consistency of equational theories and the separation problem for bounded arithmetic
Abstract: The separation problem for bounded arithmetic is one of the most important problems in the area due to its tight connections to the question whether computational complexity classes can be separated, the Millennium problem whether P equals NP or not being the most well-known one. Well studied candidates for separating theories of bounded arithmetic are consistency statements of formal theories, building on Kurt Goedel's famous incompleteness theorems. The most promising consistency statements are given by those of certain equational theories. In our talk, we will review the results on consistency of equational theories in the context of the separation problem for bounded arithmetic. We explain the progress that has been made over recent years to advance this problem, and state the research programme that has resulted from it.
*************************
--- Yoriyuki Yamagata (Senior Researcher) National Institute of Advanced Industrial Science and Technology (AIST) http://staff.aist.go.jp/yoriyuki.yamagata/en/
皆様、講演が今週金曜日と迫ってまいりました。参加のご検討をよろしくお願いします。
2019/11/28 23:17、山形賴之 [email protected]のメール:
皆様、産総研の山形と申します。Swansea大学のArnold Beckmann教授の講演会を下記の通り開催いたします。Beckmann教授は限定算術、証明複雑度およびそれらと計算複雑度との関係などを研究されています。
入構に事前登録が必要なため、参加ご希望の方は12月12日正午までに山形まで、お名前と所属をお知らせください。参加ご希望の方は必ず事前に連絡していただくようお願いします。
講演日時:12月13日14:00-15:00 場所:産総研関西センター C-3棟1階, 第10会議室 https://goo.gl/maps/ZJzcgE1agWLxypsk7
Arnold Beckmann: Consistency of equational theories and the separation problem for bounded arithmetic
Abstract: The separation problem for bounded arithmetic is one of the most important problems in the area due to its tight connections to the question whether computational complexity classes can be separated, the Millennium problem whether P equals NP or not being the most well-known one. Well studied candidates for separating theories of bounded arithmetic are consistency statements of formal theories, building on Kurt Goedel's famous incompleteness theorems. The most promising consistency statements are given by those of certain equational theories. In our talk, we will review the results on consistency of equational theories in the context of the separation problem for bounded arithmetic. We explain the progress that has been made over recent years to advance this problem, and state the research programme that has resulted from it.
--- Yoriyuki Yamagata (Senior Researcher) National Institute of Advanced Industrial Science and Technology (AIST) http://staff.aist.go.jp/yoriyuki.yamagata/en/ _______________________________________________ Kisoron-ml mailing list [email protected] http://www.fos.kuis.kyoto-u.ac.jp/cgi-bin/mailman/listinfo/kisoron-ml