<重複してお受け取りの方はご容赦ください>
皆様:
中央大学の只木と申します。
中央大学研究開発機構では、来週19日土曜日、ニュー ジーランド研究者Cristian S. Calude氏(オークランド大学) およびElena Calude氏(マッセイ大学)をお招きし、下記 要領で講演会を開催します。
皆様、奮ってご参加下さい。 ---------------------------------- 只木孝太郎 (Kohtaro Tadaki) 中央大学研究開発機構 〒112-8551 東京都文京区春日1-13-27 E-mail: [email protected] WWW: http://www2.odn.ne.jp/tadaki/
---------------------------------------------------------- Cristian S. Calude氏、Elena Calude氏 講演会
◆日時: 2013年1月19日(土)15時00分 〜 17時30分 ◆場所: 中央大学 後楽園キャンパス 5号館1階 5138号室(下記参照) ◆参加申込: 不要 ----------------------------------------------------------
[ 講演内容 ]
◆15時00分〜16時00分
講演題目:The complexity of mathematical problems 講演者:Cristian S. Calude (University of Auckland, NZ) and Elena Calude (Massey University, NZ) 講演要旨: Evaluating (or even guessing) the degree of complexity of an open problem, conjecture or mathematically proven statement is not an easy task not only for beginners, but also for the most experienced mathematicians. Is there a (uniform) method to evaluate, in some objective way, the difficulty of a mathematical statement or problem? The question is not trivial because mathematical problems can be so diverse. But, is there any indication that all, or most, or even a large part of mathematical problems have a kind of "commonality" allowing a uniform evaluation of their complexity? How could one compare a problem in number theory with a problem in complex analysis, a problem in algebraic topology or a theorem in dynamical systems? Surprisingly enough, such "commonalities" do exist for many mathematical problems. One of them is based on the possibility of expressing the problem in terms of (very) simple programs reducible to a (natural) question in theoretical computer science, the so-called "halting problem". A more general "commonality" can be discovered using the inductive type of computation, a computation more general the Turing computability. As a consequence, uniform approaches for evaluating the complexity of a large class of mathematical problems/conjectures/statements can be, and have been, developed. This talks reviews current progress and some open problems.
◆16時30分〜17時30分
講演題目: The Kochen-Specker theorem and quantum randomness 講演者: Cristian S. Calude (University of Auckland, NZ) 講演要旨: The Kochen-Specker theorem shows the impossibility for a hidden variable theory to consistently assign values to certain (finite) sets of observables in a way that is noncontextual and consistent with quantum mechanics. If we require noncontextuality, the consequence is that many observables must not have pre-existing definite values. However, the Kochen-Specker theorem does not allow one to determine which observables must be value indefinite. In this talk we present an improvement on the Kochen-Specker theorem which allows one to actually locate observables which are provably value indefinite. Various technical and subtle aspects relating to this formal proof and its connection to quantum mechanics are discussed. This result is then utilized for the proposal and certification of a dichotomic quantum random number generator operating in a three-dimensional Hilbert space.
------------------------------------------------------------ 会場への道順:
[中央大学後楽園キャンパスへのアクセスガイド] http://www.chuo-u.ac.jp/chuo-u/access/index_j.html http://www.chuo-u.ac.jp/chuo-u/access/access_korakuen_j.html [中央大学後楽園キャンパスマップ] http://www.chuo-u.ac.jp/chuo-u/campusmap/korakuen_j.html
------------------------------------------------------------